FACILITY FORM 802

S)
cesT PRICE! < Q0

e /

yard copY
13
\icrofich® M

(653 W 6

N66 26245

-iol)

(THRU)

Cl 77 /%é

{(QODE)

o7

(NASA CR OR TMX OR AD NUMBER)

(CATEGORY) =

TEXAS INSTRUMENTS

INCORPORATED’




b e R e endEeee e . s, B T T 2T e e

Prepared for

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

Electronics Research Center

Cambridge, Massachusetts

Work Performed Under
Contract No. NAS 12-75
Control No. ERC/R&D 65-45

STUDY OF SOLID-STATE INTEGRATED
MICROWAVE CIRCUITS

Scientific Report No. 1
U4-811500-4

31 December 1965




T T A W -—

T —— —— S — —— e e W e e W a—"— —" "~ —_—

ABSTRACT

26295

A study of solid-state microwave devices, techniques, and compo-
nents associated with the 1- to 6-GHz frequency range is presented. The
purpose is to determine the current state of the art of these active and
passive devices when applied to integrated circuits.

Separate sections of the report present material on: transistors;
striplines; thin-films; lumped-constant circuits; other semiconductor
devices, including varactors, PIN diodes, and Schottky barrier diodes;
high dielectric constant materials; ferrites; and filters. A summary of the
findings is presented as Section II.
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PREFACE

A study of Solid-State Integrated Microwave Circuits, under the
sponsorship of the Electronics Research Center of the National Aeronautics
and Space Administration, is being performed by Texas Instruments
Incorporated under Contract NAS 12-75. The objective of this contract
is to perform the analytical study of solid-state integrated microwave
circuits, techniques, and components necessary to accurately define the
problem areas associated with integrated circuits when various combinations
of active and passive circuit elements are required to perform a complete
circuit function at microwave frequencies.

In pursuance of this objective, this report presents the results of
work performed under the first of four items of the work statement. The
period covered is 15 September 1965 through 14 December 1965. This
first task is concerned with a study of solid-state microwave devices,
techniques, and components associated with the 1- to 6 -GHz frequency
range. The purpose is to determine the current state of the art (as well
as a reasonable projection thereof) of these active and passive devices when
applied to integrated circuits. Under subsequent items of the work statement,
this information will be used in the design of a simple hypothetical micro-
wave subsystem, specifically, an FM telemetry transmitter.

Separate sections of the report present discussions of each of the
major areas of devices, techniques, and components, that is, transistors,
striplines, thin-films, etc. In each of these sections, an attempt has been
made to present fundamental material that is sufficient for establishing the
desired characteristics or parameters of the device, technique, or compo-
nent discussed. This general information is then followed, wherever
possible, with the results of experimental investigation. Most of these
results are of very recent origin, and because new information becomes
available almost daily, what appears to be a problem today might not be
six months from now. Nevertheless, an attempt has been made in the
Summary, Section II, to draw conclusions and to outline the problem areas.

Throughout the first phase of the study program, extensive use has
been made of the results of company-sponsored programs and, in particular,
the work done on the Molecular Electronics for Radar Applications (MERA)
program under Contract AF 33(615)-1993 with the Air Force Systems
Command, Systems Engineering Group (RTD), Wright-Patterson Air Force

Base. The cooperation of MERA program personnel is gratefully acknowledged.
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SECTION 1
INTRODUCTION

One of the major breakthroughs in solid-state electronics was the
development of integrated circuits. These circuits have led to significant
advances in the reduction of size and weight in electronic equipment, with
accompanying orders of magnitude improvement in reliability. In the past,
the bulk of the work has been limited to digital circuits, dc amplifiers, and
low-frequency amplifiers. The frequency response of linear integrated
circuits has been steadily increased, and recently introduced video
differential amplifiers can provide 20-dB gain over a bandwidth of 100 MHz.
This rapid progress has brought integrated circuit technology to the point
where consideration of its application to the microwave frequency spectrum
is now feasible.

It is, of course, a big step from 100 MHz to 1 GHz and above. First
thoughts usually center around the capabilities of active devices in this
frequency range, especially transistors. Improvements in high-resolution
photography and in the control of shallow diffusions along with multiple base
and emitter contacts have made possible laboratory transistors with CW
power outputs of approximately 1 watt at frequencies above 2 GHz, and
there is no particular reason to believe that a limit has been reached.
Another important consideration involves interconnections. Although the
small size of the circuits suggests the possibility of simple overlay lead
patterns (because the lead lengths will in many instances be a small fraction
of a wavelength), the associated series inductance and parasitic capacitance
will generally preclude this simple solution. Sections of transmission line
will overcome this problem. Specifically, the microstrip form of stripline
is geometrically adaptable to integrated circuits, and laboratory investigations
have verified that this is indeed a suitable interconnection technique.

Although many areas still require investigation and significant problems
and detailed engineering work remain, it is clear that many of the standard
microwave circuit functions can be performed in integrated circuitry. In
this report, we have endeavored only to establish the current capabilities
and limitations of the devices, components, and techniques required in the
1- to 6-GHz frequency range as applied to integrated circuitry.
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SECTION II
SUMMARY

A, TRANSISTORS

High-frequency transistors require narrow base width, low base resist-
ance, and low collector capacitance. The very small dimensions are made
possible by advanced photomasking techniques, while improved control of
shallow diffusions has allowed narrow base widths on the order of 0.0l mil.
Narrow emitters and close spacing between emitter and base contacts are
necessary for low base resistance. This resistance is also decreased by the
use of a shallow diffusion, high concentration of impurities in the base region,
and the paralleling of many paths. Capacitances are minimized by keeping
junction areas small, and collector capacitance is lowered when collector
resistivity is raised. The design of a transistor is, of course, a compromise
and care must be exercised; otherwise, one parameter may be improved at
the unwanted expense of another.

For high-frequency operation with a high power output, an interdigitated
geometry with multiple emitter and base contacts is utilized. In general,
power output capability is increased as the number of these contacts is
increased. Examples are the TI3016A with 4 base and 3 emitter contacts and
the experimental 8307 geometry with 65 fingers, 33 base and 32 emitter
contacts. The latter device will deliver about 1 watt CW at 2 GHz with
3 dB power gain. The base and emitter contacts in the 8307 device are 0.2
mil wide and 3 mils long. The design of the device allows five emitter bonds
and five base bonds, which reduces lead inductance below the level of
previously constructed similar devices. At this writing, a new geometry
having 85 interdigitated fingers which are narrower and shorter than those
of the 8307 is in process. Improved performance including better thermal
characteristics is expected.

Work on low-level, low-noise devices for integrated circuits is also
progressing. Transistors being designed for use in a 500-MHz preamplifier
for the MERA program now employ five interdigitated base emitter contacts.
Measured noise figures fall between 3 and 4 dB, with most of the units
measuring around 3.5 dB. Earlier devices, with measured noise figures
ranging from 4 to 7 dB, used two base contacts and one emitter contact.

This study has shown that transistors are being designed specifically
for application to microwave integrated circuits and that significant accomplish-
ments have been made in recent months. The FM transmitter to be designed
as a part of this study is required to have 1 to 5 watts output at 1 to 2 GHz.
Laboratory devices currently under evaluation are capable of the lower
power limit, 1 watt, at 2 GHz. Higher powers may be achieved by multiple
device circuitry, although the impedance matching problems are tedious.



Device improvements and circuitry techniques for using the devices are
progressing at such a rate that the situation may be considerably different
five to six months from now. (This is also true of devices needed for circuits
other than the power amplifier). At that time, the final design of the trans-
mitter will be under way and we will be again evaluating device performance.

B. STRIPLINES

Connections between devices in low-frequency and digital integrated
circuits are usually made by simple overlay lead patterns. In microwave
integrated circuits the reactance of this type of connection would be high
because of the series inductance and parasitic capacitance of the lead.
Furthermore, resonance and antenna effects would be prevalent at high
frequencies, particularly when the length of the connections approach the
wavelength. For these reasons, sections of transmission lines must be
used for interconnections at high frequencies.

Investigations have shown that the microstrip configuration of stripline,
consisting of a ground plane and a narrow strip conductor separated by a
dielectric, can be applied to microwave integrated circuits. Its planar
structure makes it generally applicable to integrated circuit processes. In

principle, only three levels of material are required for microstrip, whereas

five are required for triplate construction.

The characteristic impedance of microstrip is primarily influenced
by the dielectric constant and the ratio of the width of the top conductor to
the thickness of the dielectric. For this reason, scaling can be applied in
the design of these lines to reduce their size to dimensions compatible with
integrated circuit dimensions. For integrated circuit application it is
desirable to use silicon as the dielectric. When this is done, the resistivity
must be high (1500 ohm-cm or greater) if line losses are to be held low
(below 1.0 dB/cm).

Measurements have been made recently on microstrip transmission
lines deposited on slices of high resistivity P-type silicon which was used
as the dielectric. The experiment included measurements on lines having
different top conductor widths. For a dielectric thickness of 10 mils, it
was found that the microstrip line having a top conductor width of 6 mils
most nearly matched the 50-ohm test system (VSWR <1.10). Measurements
were also made on the effect of top conductor thickness on line loss for
three different materials: aluminum, gold, and silver. The skin depth for
these three materials varies between 27 and 35 microinches. For conductor
thickness greater than about twice the skin depth, the loss essentially
reaches its minimum value. These values were shown to be 0.55 dB/cm
for aluminum, 0.40 dB/cm for gold, and 0.30 dB/cm for silver.

Thick-film evaporation techniques have been used to deposit aluminum
and silver top conductors. Since silver does not adhere well to silicon, a
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very thin film of vanadium is evaporated on the silicon first and the silver
evaporated on the vanadium. A thick gold film is developed by plating over a
thin evaporated gold film. Although these processes are being continually
improved, the application of current process steps yields excellent micro-
strip components. However, when striplines are combined on the same
substrate with active devices, which require high-temperature diffusions,
the bulk resistivity of the silicon dielectric in the microstrip is sometimes
reduced drastically. Although this problem is not completely solved, careful
control of process steps minimizes its occurrence, and investigations aimed
at its complete solution are being conducted.

Standard microwave components such as couplers, transforming
sections, and a class of filters can be built using this stripline technique.
For example, a balanced mixer consisting of a hybrid, the diodes, and an
output filter has been constructed using microstrip techniques on a 160-
by 260-mil chip.

C. THIN-FILMS

Thin-film passive components such as capacitors and resistors offer
several advantages over their diffused counterparts. Broadly speaking,
there are two reasons for using thin-film passive components: First, it
may be impossible to achieve the desired characteristics using diffused
components, whereas these characteristics are possible with thin-films.
Second, although it might be possible to achieve the desired characteristics
using diffused components, the diffusion process would have been optimized
for the passive components with the result of degrading the parameters of
the active devices made on the same substrate.

Thin-film components have been used in two ways. The multichip
approach, wherein the passive components are deposited on separate sub-
strates from the active components, is the most versatile and the older
of the two. In the second approach, all components are fabricated on the
same substrate; this is the true hybrid thin-film/monolithic circuit and
the approach of principal interest.

Tantalum and nickel-chromium metal films have been widely used to
fabricate thin-film resistors. Such resistors offer improved performance
over diffused resistors in their temperature coefficient of resistance,
reduced distributed capacity, wider range of sheet resistance, higher voltage
breakdown, lower tolerance, and much higher operating frequency limit.

The improved high-frequency performance is due to the greatly reduced
parasitic capacitance. These films can be used effectively when the passive

components are deposited on a substrate separate from the active components.

However, they are easily damaged by the high temperatures encountered
in the integrated circuit final assembly operations, ball bonding and bar
mounting.



Cermet (Ta-Ta0s5) resistors have much greater stability (they are an
order of magnitude thicker than the metal films used) and compatibility with
the high-temperature assembly operations mentioned. For this reason,
Cermet is the material of chief interest for use with thin-film/monolithic
circuits.

Cermet resistors can be fabricated with sheet resistivities over a
wide range (1 to 5000 ohms per square), thus affording good control of
parasitic capacity to substrate. Since this capacity is proportional to the
area covered by the resistor pattern, the high-frequency performance is
improved by keeping this area small. The temperature coefficient of
resistance will, depending upon a number of factors, lie between the limits
of =20 and ~1000 ppm/°C.

Cermet resistors are stabilized by baking at 350°C prior to the ball-
bonding and bar-mounting operations which are performed at 300°C; they
readily withstand these temperatures. These resitors are suitable for use
at high frequencies. Their performance is a function of value and physical
size because of the influence of these two parameters on the effect of and
the value of parasitic capacity. Furthermore, the silicon substrate resis-
tivity influences the high-frequency characteristics and should be kept
high. Circuits using these resistors have shown excellent performance at
frequencies as high as 500 MHz, which is the limit of current application
requirements and not a fundamental performance limit.

As the dielectric material SiOy and TaOg have been used extensively

in the fabrication of thin-film capacitors, Ta2Og has been used at frequencies

up to about 10 MHz, above which its dielectric properties are degraded.
This material is usually used at the lower frequencies, where the need for
larger values of capacitance is more readily satisfied by its dielectric
constant (which is higher than the dielectric constant of SiO2). Since the
basic dielectric properties are of SiOp are good out to about 25 GHz, it is
the material of interest in this study.

An important benefit derived from the use of thin-film capacitors is
the much reduced parasitic capacity to substrate as compared to that
encountered when diffused capacitors are used. The ratio of desired to
parasitic capacity for diffused capacitors can be as low as 2 to 1, whereas
this ratio can easily be made greater than 10 to 1 when thin-film capacitors
are used. A capacity per unit area as high as 0.6 pF/mil2 can be achieved
with SiO; as the dielectric. For high-frequency applications, thick capacitor
plates are needed if reasonable values of Q are to be achieved. When thick
plates are required, thicker dielectrics are also required. This limits the
attainable capacities per unit area to 0.1 to 0.2 pF/mil2 for capacitors to
be used at high frequencies. SiO) capacitors have temperature coefficients
ranging from 6 to 30 ppm/°C, a marked improvement over the 700 ppm/°C
typical for diffused units.

Both aluminum and molybdenum-gold plates have been used sucess-
fully. Both are compatible with the 300°C final assembly integrated circuit
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operations of ball bonding and bar mounting. The development of pinholes

in the dielectric is still a problem which lowers yields, in spite of improved
processing which has alleviated the problem somewhat. This is the reason
thick dielectrics are used when thick plates are used. SiO capacitors have
been fabricated with values ranging from 5 to 10 pF for signal-path applica-
tions and values between 125 and 300 pF for bypass applications. Measurements
have shown that no appreciable increase in Q is obtained for plates thicker
than about two times the skin depth. As a typical example, the Q of a 15-pF
capacitor was measured to be 200 at 1 KHz and 47 at 500 MHz. Tests at
higher frequencies have not been made because of the lack of an application,
but as in the case to thin-film resistors, good performance at higher
frequencies is expected.

D. LUMPED-CONSTANT CIRCUITS

Interest in lumped-constant circuits in integrated microwave circuits
stems form the possibility of realizing circuit elements of small size.
While there is no sharp line defining the boundary between which lumped-
constant and distributed constant circuits can be used, the most fundamental
consideration is the size of the lumped-constant circuit element relative
to the operating wavelength. In general, the largest dimension of the element
should be no more than 1 percent of the wavelength. At 1 GHz the wavelength
is 30 cm, which would indicate that circuit element dimensions on the order
of 0.3 cm (118 mils) could be used. Fortunately, this dimension is compatible
with the values of inductance and capacity which might be useful in this
frequency range. Thin-film capacitors having a capacity per unit area of
0.1 pF/mil% can be reliably fabricated. Assuming that the geometry for
the capacitor is square and the values needed are in the range of 5 to 75 pF,
the dimensions will range between 7 and 27 mils on a side. Similarly,
inductors can be made by using thick-film deposition processes. Assuming
that the ''coil' is square and that values in the range of 0.5 to 10 nH will
be required, the geometry can be less than 50 by 50 mils. In both cases
the physical size is compatible with the 1 percent of wavelength criterion.

Unfortunately, this basic size consideration is only part of the problem,
the other part being with parasitic effects. Integrated circuit inductors
have undesired parasitic capacity to a lossy substrate and from turn to
turn; resistors also have parasitic capacity to the lossy substrate; and
capacitors have series resistance and inductance as well as parasitic capa-
city to the substrate. These undesired ''circuit elements'' limit the useful-
ness of these so-called lumped-constant circuits.

Resistors, capacitors, and inductors are needed for lumped-constant
circuits. The performance of resistors and capacitors suitable for applica-
tion to integrated circuits has been discussed in the preceding subsection.
For integrated circuits, inductors in the form of flat, square spirals may
be used. Experimental work has been at 500 MHz, the application being an
IF preamplifier.



Measurements have shown that the inductance of a flat, square, spiral
inductor operating at 500 MHz can be calculated within +10 percent, based on .
the geometry of the coil, using low frequency inductance formulas. Similarly,
self-resonant frequencies can be approximated based on the geometry.
However, an analytical approach to determining the Q of the inductor is not
yet available. A simple approach based on determining the effective plate
resistance yields an upper bound on the Q. Realized Q's are less than this
value by a factor of about 3. The major factor contributing to this reduction

is the resistivity of the substrate. Using P-type silicon substrates with an
8000 A insulating layer of SiO2 and an aluminum-deposited conductor,

measurements show a factor of 3 increase in Q as the substrate resistivity

is increased from 1000 to 4000 ohm-cm. The Q increases with increased
conductor thickness up to the point where the thickness is twice the skin

depth of the material; beyond this thickness, the increase of Q is negligible.

A specific example indicates the present status of the experimental work.

A 4-turn coil with a 4-mil-wide conductor and 4-mil turn separation deposited
on 5000 ohm-cm P-type material has a 29-nH inductance at 500 MHz. With

a conductor thickness of 300 microinches, the Q is 25. Such inductors will

be suitable for many applications and the thick-film deposition processes

are compatible with other integrated circuitry processes.

E. OTHER SEMICONDUCTOR DEVICES (VARACTORS, PIN DIODES,
SCHOTTKY BARRIER DIODES)

The nonlinear capacitance of a varactor is useful in many ways.
Generally speaking, these involve conversion of power at one RF frequency
to another. Two, three, four or more frequencies may interact in the
varactor, and of those some may be useful inputs or outputs, while others
are idlers that are not part of any input or output although they may be
necessary to the operation of the device.

The chief requirement is for high-frequency varactor diodes to be
capable of use in frequency multiplier circuits as well as being structurally
compatible with integrated circuit design techniques. For use in a frequency
multiplier chain, a surface-oriented diode has been developed. For this
variable reactance device, maximum possible Q is essential. The surface-
oriented varactor diode structure has several unique advantages. The
extensions of the heavily doped Nt and Pt material into the high resistivity
substrate allows all of the effective diode area to be confined to the low
resistivity epitaxial layer. This results in maximum possible varactor Q
attainable from the device.

Surface-oriented varactor diodes have been fabricated, and extremely
high leakage currents were observed. This may be explained by the external
high surface concentrations. The leakage currents were reduced by the
introduction of a three-hour 900°C oxygen step following the boron diffusion.




The diodes have been evaluated in the p mesa* package using the third
terminal as a ground terminal for capacitance measurements. The metal
case was also connected to the ground terminal to minimize the package
capacitance. This was found to be an extremely beneficial step since it
reduced the package capacitance from 0.30 pF to 0.04 pF. The results of
experimental work has verified the analytical procedures used. Fabrication
of surface-oriented varactor diodes has been compatible with stripline inter-
connection techniques. The results so far are quite promising.

Pin diodes are ideal for switching applications, and the surface-oriented
PIN switching diode has been developed for compatible interconnection with
microstrip transmission lines. At microwave frequencies, stray capacitance
must be reduced to a minimum to avoid loss of component function. The use of
a surface-oriented diode structure allows the reduction of stray capacitance
resulting from contacts expanded over oxide-protected active substrates.
These diodes have a geometry in which the anode and cathode areas are
adjacent at the surface of a silicon chip and have a carrier flow under bias
which is approximately parallel to the surface. The requirement is for low
resistance on forward bias to provide low insertion loss and low capacitance
on reverse bias so as to obtain high isolation.

For the conventional planar diode, the contacts to the other elements
of the integrated circuit are made by means of metal stripes of the required
width, separated from a ground plane by high resistivity silicon, forming
a microstrip transmission line. The diode design must be compromised to
conform to the required geometry. Large capacitance results from design
requirements for other diode parameters. In order to reduce the diode resist-
ance on forward bias, a large anode area is needed; this will result in increased
capacitance upon reverse bias. The metal contacts are expanded over oxide-
protected active substrates, thereby further increasing the capacitance.

In the surface-oriented diodes, we have typically anode and cathode
diffusions into the high resistivity silicon and metallic contacts in opposite
directions to form the microstrip transmission line. On forward bias,
carriers are injected into the I region all along the PN junction, reducing
the series resistance by means of conductivity modulation. On reverse bias,
there exists a number of parallel capacitors with the maximum capacitance
occurring at the closest spacing. The reverse bias capacitance is therefore
largely determined by the depth of diffusion. To achieve low resitance on
forward bias, the spacing between anode and cathode is made very small,
causing the diodes to punch through on reverse bias; but the larger
capacitance of a punch-through condition is offset by the ability to control
capacitance by the diffusion depth. The surface-oriented diode conforms
readily to microwave stripline geometry, and effects of expanded contacts
are minimized.

When the equivalent circuit for a PIN diode is considered as an RX
meter parallel circuit, the MOS and barrier capacitance are combined into

*Trademark of Texas Instruments Incorporated.



one measurable value. A large value of MOS capacitance could reduce the
effectiveness of the small reverse bias capacitance and make the diode switch
useless at high frequencies. To evaluate this possibility, data were taken

for typical values of elements for two different substrate resistances. The
results showed that the MOS capacitance essentially disappears above 10 MHz
and that only the barrier capacitance is effective.

Schottky barrier diodes are well suited for use in integrated circuits
in the microwave frequency region. A planar structure which utilizes the
properties of a metal-semiconductor junction, the Schottky barrier exhibits
the properties of an abrupt junction rather than the graded junction charac-
teristics of the diffused junction devices. The use of thin epitaxial layers
in conjunction with planar Schottky barrier junctions has produced very
high Q microwave devices.

An important area of application for Schottky barrier diodes is in
microwave mixers. A single-sided silicon microwave mixer diode has been
fabricated; it is suitable for integration with a microstrip hybrid formed
directly on high-resistivity silicon. The diodes are formed on epitaxial
material that has been grown in vapor etched pockets in high-resistivity
P-type silicon substrate material. These holes are selectively placed
on the substrate, their positions being determined by windows in the oxide
layer, which acts as a barrier to the etch where no windows exist. The
holes,whichare about 0.1 mil deep, are then refilled with N-type epitaxy
of about 0.05 ohm-cm resistivity. Portions of the epitaxial region which
are to act as ohmic contacts are then given a heavy Nt deposition and
molybdenum gold is evaporated to form a metal-semiconductor contact.
Diodes fabricated in this way have been subjected to extensive testing and
the results are quite promising.

F. HIGH DIELECTRIC CONSTANT MATERIALS

High dielectric constant materials have been used at microwave
frequencies in essentially two ways. First, they have been used to reduce
the size of microwave components such as cavities. The size reduction is
proportional to the square root of the dielectric constant. This is due to
the fact that the wavelength in the material is reduced by this same factor.
Thus, for a dielectric-filled cavity where the dielectric constant is 100,
the volume of the cavity would be reduced by a factor of 1000 compared to
an air-filled cavity. The materials have been used to build tunable cavities
having high Q's and broad tuning ranges. In the second type of application,
the characteristic of the material exhibits resonances in various modes when
operated with free space boundaries. Microwave filters utilizing coupled
dielectric resonators have recently been constructed and tested. Three-dB
bandwidths of less than 20 MHz have been realized at 3 GHz.

The most general material considered for use is TiOp. Its dielectric
constant is around 100 at 25°C. The main problem with this and other

10




materials is the strong dependence of the dielectric constant on temperature.
Materials such as BaTiO, and SrTiO, have higher dielectric constants and
even greater dependence on temperature.

Although the characteristics of these materials can be utilized to
reduce the size of standard microwave components and to provide small
high Q filters, it is not yet evident how they may be used in microwave
integrated circuits.

G. FERRITES

Magnetic oxides have become particularly important because in
addition to their magnetic properties they possess very high electrical
resistivities (P > 106 ohm-cm). Hence, they can be used at very high
frequencies. On the other hand, magnetic metals, with their relatively low
resistivities, exhibit such severe skin effect at high frequencies that
magnetic fields do not penetrate into the bulk of the metal and their inherent
magnetic properties cannot be exploited. In engineering practice almost all
magnetic oxides are called ferrites, regardless of whether they contain
iron.

The property of extremely high resistivity makes it possible to use
ferrites as microwave circuit elements, whereas with iron a microwave
signal sees an effective reflector. Inthe case of ferrite the wave can
enter and pass through substantial amounts of the material without excessive
reflection or attenuation, and in the process the wave has an opportunity
for stronginteractionwiththe spinning electrons. As a result of this inter-
action, nonreciprocal phase shift and attenuation as well as nonlinear effects
can, under certain suitable conditions, be manifested.

Presently, the state of the art in ferrite devices is quite limited with
regard to integrated circuits. This limitation is due to the difficulty of
achieving small dimensions compatible with integrated circuits while providing
the external field required. To avoid this problem, several of the circuit
functions customarily assigned to ferrite devices will be performed with
surface-oriented diodes, for example, switches, modulators, and phase
shifters. Other circuit functions can be performed with ferrite devices
having small dimensions compatible with integrated circuits as an external
circuit element, for example filters, isolators and circulators.

H. FILTERS

Transmission line structures compatible with integrated circuitry
can be accomplished in microstrip form. Since this is the case, an important
class of filters can be fabricated in integrated circuits.

An example of this class of filters is a bandpass filter consisting of
parallel half-wavelength stripline resonators. The resonators are positioned

11



adjacently but offset by half of their length; the coupling of these resonators
is a function of the spacing between them. This filter allows the use of
open-circuit resonators, which eliminates a major grounding problem. This
construction is particularly convenient for printed-circuit filters. The filter
has a second passband at the third harmonic and, if not precisely tuned,
will exhibit a narrow spurious passband near the second harmonic. Such
filters built in conventional printed-circuit form have a VSWR less than
1.15 and an insertion loss of 0.3 dB or less at a center frequency of 3 GHz.

The interdigital filter has an improved response characteristic, but
unlike the preceding example, requires short-circuited resonators. This
matter of providing an RF short circuit is, in practice, very difficult to
achieve in conventional printed-circuitry and there is no reason to believe
that it would be any easier in integrated circuits. Though experimental work
has not been done in this area, there is sufficient reason to believe that
many of the standard stripline filters can be realized in integrated circuits.
One of the problems will be minimizing the loss-per-unit length of the
integrated circuit microstrip line to avoid compromising the fundamental
filter design.

12




SECTION III
TRANSISTORS

A. GENERAL

Germanium and silicon transistors with maximum operating frequencies
fmax in the range of 6 GHz have recently become available. This advance is
due primarily to basic improvements in the technologies of diffusion and high-
resolution photography. These improvements have made possible the
realization of transistor amplifiers at correspondingly high frequencies and
with higher gain-bandwidth products at lower frequencies.

The three materials generally considered for application to conventional
transistor structures are germanium, silicon and gallium arsenide. The
general status and capability of each of these materials are reviewed in the
following paragraphs. In additional, the metal base transistor is discussed.

1. Germanium

Germanium transitors with a maximum frequency of oscillation
fmax in excess of 10 GHz are presently being made in the laboratories.
These are a result of investigations into the planarization of germanium,
and further improvement in performance is expected. Germanium is the
best currently available basic material for achieving the highest f 5.
Unfortunately, it is the poorest material from the standpoint of operating
temperature. For a given frequency capability (i.e., fiy35), germanium
will have the lowest power output, since its lower permissible junction
temperature will limit power input.

2. Silicon

Silicon transistors are at present in the best position to supply
microwave power. The most serious limitation to silicon transistor perform-
ance is the relatively poor majority carrier mobility in the base, which results
in a base resistance higher than that of germanium. However, this disadvantage
has been almost completely overcome by the photomasking techniques now
being used with silic'on. With emitter stripe widths of 0.1 mil, it has been
possible to reduce r} to values comparable to that achieved in germanium.
During the next two years, continuing improvements in photomasking
techniques plus better control of shallow diffusions will result in raising

the f,,5 of silicon transistors to somewhere in the 9-GHz region.

X

3. Gallium Arsenide

Gallium arsenide transistors have a typical temperature range
from —-200°C to +300°C and should yield transistors capable of operating
at high frequencies. Devices with an hfe of 40 to 50 at 300°C have been
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obtained by Texas Instruments in the laboratory. The leakage current is
better than that of silicon devices by an order of magnitude. In the current
state of the art, gallium arsenide has several disadvantages: a high noise
figure, a decreasing hg, with increasing temperature, and a high emitter
resistance. At the present time, efforts are being made to alleviate these
problem areas so that a useful transistor can be built in the future.

Gallium arsenide transistors are not yet available for high-frequency
power applications. Some relatively high-current gain cutoff frequencies have
been realized, but not in conjunction with other desirable parameters. Although
gallium arsenide and related III-V ternary materials are expected to provide
a family of high-frequency devices in the 1- to 10-GHz region, it is unlikely
that these will be fully developed in the next two years.

4, Metal Base Transistor

A further consideration of transistors is the metal base transistor.
Theoretical calculations on the metal base transistor indicate higher fre-
quencies of operation and the possibility of achieving higher power levels.

For investigation purpose at Texas Instruments, the Au/GaAs system has
been chosen. Gold layers have been deposited on GaAs surfaces by various
methods and examined under a variety of conditions. Little difficulty has

been experienced with this technique in the formation of thin, ordered gold
films. The further operation of producing a single-crystal GaAs film on

the gold layer does present a problem, which has not yet been solved. Devices
of this sort, while not presently available, must be considered in future
applications because of their potential impact.

For the purpose of the present study, only the germanium and
silicon technologies are sufficiently advanced. Of these two, silicon offers
more in the combinational requirements of high ambient temperature,
high-frequency operation and high power output.

B. BASIC CONSIDERATIONS

High-frequency transistors require low base resistance ry and col-
lector capacitance Cc. A useful equivalent circuit applicable for small-
signal consideration is shown in Figure 1. Typical values of the parameters
for a commercially available silicon NPN microwave transistor, the TI3016A,
are:

ry, = base spreading resistance = 10 to 20 ohms
C_. = collector to base capacitance = 0.5 pF
c P |
ro = emitter resistance ~ 26/Ig(mA) ohms =~ 1.3 ohms at 20 mA

Ce = emitter storage capacitance =~ 1/2 rfpr, = 60 pF typical,

where f is the frequency at which the common emitter current
gain is unity, 1.8 GHz typical for this device.
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Figure 1. Approximate High-frequency Equivalent Circuit for a Transistor

Performance factors of high frequency transistors have been summarized
by Cookel, and only the pertinent relationships are repeated here.

Power gain of a transistor is given by

fmax 2
PG %( ) (1)
f
where
fmax - maximum frequency of oscillation
f = operating frequency
fmax can be determined by
aofT
fmax = 200 |7 (2)

where
@, = low frequency alpha of the transistor
fo = frequency in MHz, where the common emitter current gain is unity
r{) = base spreading resistance in ohms
C. = collector to base capacitance in pF.
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Combining Equations (1) and (2), we obtain

4
4 X 10%af T
PG = —5——— . (3)
f°ry, C¢

The 6-dB-per-octave gain rolloff implied by the square term in the denomina-
tor applies, of course, only in the high-frequency region.

Another important characteristic of transistors in their noise figure,
which depends on much the same parameters as gain and is given byz’
' 2

t

r r {ry + ro + R,)2 I

F=l42 42 ¢ B¢ g —1—+(f—f)+io . (4)
Rg ZRg ZQORgre heeo o I

For transistors operating under small-signal conditions, conventional
characterization in terms of Y or other parameters may be used for circuit
design. Accurate measurement of the parameters is somewhat more difficult
than at lower frequencies; nevertheless, in principle and practice, the same
techniques employed at lower frequencies to measure transistor parameters
can also be applied in the microwave region.

Transistors designed with higher current and power dissipation ratings,
while maintaining performance capabilities well into the microwave region,
are becoming increasingly available. Single transistors capable of deliver-
ing a 2-watt output above 2 GHz are now available in the laboratory. It is
desirable to utilize such transistors as oscillators and amplifiers where
power output and efficiency are of prime importance. The maximum power
output and efficiency from a given transistor is obtained under Class C
operations (i.e., collector current flowing appreciably less then one-half
cycle), and in general the parameters of the transistor under such large-
signal operation vary considerably from small-signal values. This
variance of parameters is not necessarily objectionable when it is possible
to incorporate tuning adjustments in the amplifier or oscillator circuit.
However, it is often undesirable, from either a fabrication or a design
philosophy viewpoint, to employ tuning adjustments in integrated circuit
applications. Under such conditions it is necessary to obtain a knowledge of
the transistor characteristics at various ''levels'' of large-signal operation.

One method of obtaining the information desired in a form directly
applicable to amplifier circuit design’ is shown in Figure 2. This
figure represents a single-stage test amplifier with the networks Nj and Nj,
being adjustable and capable of presenting a wide range of impedance
variation to the transistor. The transistor under measurement is operated
in the test amplifier at various output powers and at the desired frequencies.
The source and load admittances (or impedance) can then be determined
either directly from the tuning stub positions or by VSWR measurements
made looking back toward the source (or load) and referenced to the
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Figure 2. Coaxial Test Arrangement for Large-signal Characterization
of a Transistor, Schematic Diagram?

transistor terminals. The important point is simply that the small-signal
equivalent circuit is no longer applicable for large-signal operation.

The choice of whether the basic circuit configuration should be common
emitter or common base or, in some cases, common collector, depends
upon a detailed analysis of a number of factors such as the operating fre-
quency, circuit function to be realized, transistor parameters, and impedance
levels. However, the following general comments can be made.

The common base (CB) configuration is characterized by a relatively
low input and high output impedance and a positive internal feedback. The
feedback is due to the collector capacitance Cc, which makes circuit
instabilities possible if the input and output loading is not correct. As the
current gain o is less than unity, the power gain is obtained purely by
impedance transformation.

The common emitter (CE) configuration has a somewhat higher input
impedance and a lower output impedance than the common base. The internal
feedback due to C. is negative, which tends to reduce the gain below the
maximum power gain unless C. is neutralized. When the transistor has an
fT suitably higher than the operating frequency (on the order of two times
or more), it is generally preferable to operate in the CE configuration because
of the inherent stability of this mode of operation.

At the higher frequencies (f > f1/2 typically) the CB configuration
becomes more attractive. The common collector circuit has a number of
limitations and is not generally the best choice for high-frequency amplifier
circuits.

In general, semiconductor networks are fabricated around an NPNP
structure for transistor fabrication and the third PN junction for isolation
as shown in Figure 3. This is the simple triple diffused structure. There
are several types of integrated device structures in use ranging from this
relatively simple structure to the complex epitaxial structures. Resistors,
capacitors, and diodes are fabricated at the same time as the transistor
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Figure 3. FEB Configuration

structure. Inthe diagram, only a transistor and resistor are shown, but
the same general rules apply to the regions from which the other components
are fabricated. 1

As the operational frequency of a device is increased, its active
dimensions must decrease. This appears to be fundamental, independent
of the type of device. Figure 4 demonstrates this for some discrete silicon {
devices of both experimental and production types. Since the frequency of
operation of some devices being considered in this study is 1 to 6 GHz,
devices with emitter dimensions of about 0.1 mil will be required.

There are two basic groups of transistor power amplifiers —the linear
Class A amplifiers and the nonlinear Class C amplifier. Just which type of
amplifier is best depends on what is wanted, the big difference being effi-
ciency and gain. In both types of amplifiers the requirement is to produce
as much power output as possible at frequencies over the range 0.30 to
3GHz, and then by the use of frequency multipliers, extend to the higher
microwave frequencies.

The power generation sources currently available are limited to
somewhere in the region of 3 GHz. Above this frequency, combinations of
transistor and varactor will be used. Here is the point at which power
generated by the basic amplifier multiplied by the frequency conversion factor
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Figure 4. f as a Function of Transistor Geometry

max

and the attenuation of the varactor will result in a figure of merit for the
combination which could be optimized for each particular solution depending
on the final RF frequency and the output power required.

Almost all of the performance measurements made on power amplifiers
to date have been made for pulse operation of the device. For CW operation
approximately one-half this pulse power output can be realized. It is not
possible to realize an increase in peak power output, over CW output,
commensurate with duty cycle (as is the general case with vacuum tubes)
because the power output of the semiconductor device is limited by the
breakdown voltage and the maximum current the device can withstand.

In addition, the structures required for power amplification need to have

19




SI0}S1SUBIJ, UODI[1g I10J Aduanboi g sSNSIsp I9mOog °gG 2andig

660v€E
(ZLY3HVYOID) AONINDINA
9 s v € 2 o1 S0 0
T T 0
~ os

N - o001
SLIvMITTIW ooz =Ny u
9961 *IDIA3IA AIL1dIroud m
m
sLlvmiTiiw ooz =Nl M
HOLSISNVYEL gv1 L¥V—THL-40-31VLS — 5
- N
osi 2
=
C
b3
>
9
|—
~7

- ooz

LNANI LLVMITTIN O0E VO 10E 1L
—osz
Jooe

20




good thermal characteristics to ensure that the junction temperature is kept
as low as possible.

As the frequency capabilities of the transistors are extended, the devices
necessarily become smaller and thus the power input must be less. This
effect is illustrated in Figure 5. State-of-the-art devices one-third the size
of the TI3016A show much improved efficiency at 3 GHz but with a more
limited lower-frequency power-handling capability.

The problem of limited dissipation in small geometry transistors
can be overcome to some extent by paralleling several devices dispersed
about a chip. This approach is moderately effective below about 1 GHz.
Above 1 GHz the effect of the parasitic capacitance introduced by the evaporated
contacts becomes increasingly important and narrower; thicker contacts may
be used to improve this situation. Recent investigations have shown that wires
bonded individually to dispersed chips does not degrade performance as much
as expected.

The most efficient solution to this high-frequency problem has been to
enlarge the transistor area, keeping in mind that the thermal and electrical
characteristics must be maintained. This has been accomplished by using
multiple base and emitter contacts in an interdigitated configuration. This
method has proved to be very effective and is the approach currently used
to achieve high-power, high-frequency operation. The latest geometries
have used a total of 65 base and emitter contacts.

C. ADVANCES IN MICROWAVE TRANSISTORS

For the past several years, Texas Instruments has worked toward
extending the frequency response and power handling capability of transistors.
This has led to the development of transistors which represent a new
generation of UHF silicon devices, for example, the TI3016A.

1. TI3016A Transistor

The TI3016A and 2N3570 are electrically identical, but are
supplied in different packages (TI-line* and TO-18, respectively). These
devices are planar-epitaxial silicon transistors that feature very small
dimensions made possible by advanced photomasking techniques. Inter-
digitated base and emitter contacts result in very low base resistance.
Figure 6 is a photograph of the completed silicon chip. Four base fingers
and three emitter fingers are clearly seen, as well as the expanded areas
for making external contacts. The total area of the base diffusion window
is 7.2 sq mils.

s

"Trademark of Texas Instruments Incorporated.

21



Fi
gure 6. Photograph of TI3016A Silicon Planar Transistor Geometry

22



The outstanding performance of this unit results from the following
high frequency parameters:

Very-high cutoff frequency: f3 = 1.7 GHz

Very-low base resistance: r,'b ~ 10 to 20 ohms

Low capacitance: C. = 0.5 pF.

There parameters are the result of a very narrow base (base width is in the
order of 0.0l mil) and the other very small dimensions. The electrical
characteristics of these units are summarized in Table I.

Table I. Characteristics of 2N3570 and TI3016A

2N3570% TI3016A
Characteristic
Min Typical | Max Min Typical | Max
BV bo 30V 30V
(10 wA) (10 pA)
hfe(6 V, 5 mA) 20 200 20 200
ry Ce(6 V, 5 mA) 5 ps 8 ps 5 ps
f7 (6 V,5 mA) 1.56 GHz 1.7 GHz 1.7 GHz
NF (1 GHz, 6 V, 5 mA) 7.0 dB 6.0 dB
fmax 4 GHz 4 GHz
Po(l GHz, 20 V, 15 mA) 60 mW 30 mW
( 2 GHz)

’P(Useful to 1.5 GHz and then) package limited.

During the design of these transistors, certain limitations
presented themselves which are considered important.

High Frequency Cutoff —Several structure-determined time
constants are involved in cutoff frequency. The most
important of these is the base width. An important
phase of the development of the TI3016A transistor
was the development of suitable base and emitter
diffusions so that a base width of about 0.0l mil could
be consistently realized.

Low Base Resistance—For convenience the base resistance
may be separated into two components: that part under -
neath the emitter and that part between the emitter
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and base contacts. The first part may be minimized
by using very narrow emitters. The emitter width is
about 0.1 mil in the TI3016A. The second part is
minimized by close spacing between emitter and base
contacts and by paralleling many paths. The spacing
between emitter and base contacts is 0.2 mil in these
units, and the interdigitated geometry provides six
parallel paths.

Base resistance may also be lowered by a proper
diffusion profile, although other factors must be
considered. The TI3016A has a very heavy concentra-
tion of impurities in the base and a very shallow
diffusion front. These lower the resistivity of the

base, particularly under the emitter where an apprecia-
ble portion of the base resistance usually exists. The
combining of an optimum diffusion profile and an
interdigitated geometry has resulted in a small-signal
silicon transistor with ry' in the order of 15 ohms.

Low Capacitance —Low capacitance is a desirable feature in
any high-frequency device. The most effective way to
reduce capacitance is to reduce the junction areas.
The junctions of the TI3016A and 2N3570 are quite
small, the actual areas being 7.2 sq mils for the
collector -base junction and 0.9 sq mil for the emitter-
base junction. It is possible to reduce collector
capacitance by raising collector resistivity or by
increasing the collector-base voltage. There are
practical limits to these changes, however, and
other factors must be considered. Among these fac-
tors are collector series resistance and behavior
of the device at various voltages and currents (which
is influenced by the width resistivity of the collector
epitaxial region).

Measurements of a single-stage doubler have been made using
the L-49 geometry with special diffusion schedules designed to increase the
high frequency response and the power handling capability. (The geometry of
the L-49 is the same as that used for the TI3016A.) Typical results for
several devices tested showed that the doubler developed a 30-mW output
at 4.5 GHz with a 10-mW input at 2. 25 GHz 4 These measurements were
made under pulsed conditions. With the same devices operated under the
same power levels, the output power at the fundamental, 2.25 GHz, would
be approximately 60 mW.

It is believed that a better understanding of the mechanisms involved
in frequency multiplication is desirable and that this mode of operation may
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provide a simpler means of obtaining power at a higher frequency. It appears,
however, that this method of conversion and amplification may not produce

an efficiency as high as that obtained by a straight-through amplifier driving
an optimized diode frequency multiplier.

2. 8307 Geometry

A number of transistors with a variety of basically different
geometries were tested in a continuing effort to improve high-frequency,
high-power performance. An example is the dual 35-contact geometry
(Figure 7) designated the ''8306 geometry.' The fundamental problem with
devices using this geometry is a relatively low efficiency. The 8307
geometry (Figure 8) was designed to improve the efficiency. The 8307
consists of sixty-five 0.2 mil by 3 mil interdigitated fingers in a single-
device structure.? Because it allows for five emitter bonds and five base
bonds, the inductance is somewhat lower than that of previous devices.
The overall substrate size is 30 mils by 40 mils in the evaluation configura-
tion. The final size will be considerably smaller.

Many devices with 65-stripe geometry have been tested as
2-watt amplifiers. All devices with good breakdown voltages met the 2-watt
output and the 3-dB power gain criteria. Typical device performance4 is
shown in Figure 9.

Additional 65-stripe geometry devices with a new ceramic
carrier package have been fabricated and tested. Devices from run A-68
operated similarly to the A-63 device and gave good performance at 30 to
35 volts bias. Run A-69 was fabricated on thick epitaxial material, and
consequently the device had reduced output capacitance (3 pF at 10 volts).
However, these devices required greater than 50 volts bias to achieve
good performance at the 2-watt level.

It appears that run A-63 is close to the optimum for good
performance with 28 to 30 volts bias. Additional runs are in progress. The
goal is to reduce the emitter transition capacitance and possibly improve
the device performance as a Class C amplifier.

3. 1.-146 Device

An exarnple5 of a basic geometry considered for small-signal,
high-frequency application is shown in Figure 10. This three-finger device
has been considered for use in the MERA IF preamplifier which operates
at center frequency of 500 MHz. This device is one version of the L.-146
structure (the designation ""1.-146" is reserved for the device ultimately
used in the preamplifier). The important characteristics of the device are
given in Table II; the desired noise figure is 2.5 to 3.0 dB, and measured
noise figures have run 1 to 3 dB higher than desired.

A device now under development appears to be the best
geometry for the low-noise 500-MHz transistor. It is a five-finger transistor
which is the equivalent of two-thirds of the 1.-49 in area, and the finger
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8306 Geometry

Figure 7.
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Figure 8. 8307 Geometry
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Figure 9. Power Gain and Efficiency Versus Peak Pulse Power Output,
MERA Device A55D No. 4, 8307 Geometry

A number of breadboards of a three-stage amplifier employing L-49 devices
were constructed (Figure 11) and the units evaluated4 A gain of 25 dB at
1.5 GHz was obtained. Difficulties in realizing the circuit were encountered,
which did not allow operation at 2.25 GHz. Present work is directed toward
single-stage circuit testing using the 8307 geometry device in a package.

An extensive program in device characterization is under way.

A single-stage IF preamplifier has been constructed on a printed
circuit board measuring 0.75 by 0.75 inch. Used between silicon substrates
were 1 -mil gold wire interconnections. The L-146 transistor was mounted
on a metal tab with input/output/power connections made through subminiature
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Figure 10. Lead Pattern and Geometry5
for L-146

connectors mounted on the reverse

side of the board. Figure 12 is a
photograph4 of the amplifier, Figure 13
a schematic diagram. Performance

of the amplifier was:

fo 480 MHz
BW (-3 dB) 200 MHz
Power gain 7 dB.

Following the construction of
the single-stage amplifier, a two-stage
amplifier using two L-146 transistors
was built on a printed circuit board
0.75 by 1.0 inch. The only difference
between the construction techniques
was in the two-stage amplifier, where
all passive components were located
on top of the ground plane to simulate
the ground plane under the silicon
substrate when the circuit is reduced to
monolithic form. A photograph4 and
schematic diagram™ are shown in
Figures 14 and 15 respectively.

A comparison of the present and desired performance is presented

in Table III.

Table III. Present Versus Desired Performance of the L.-146 Device

Present Desired
fo 505 MHz 500 MHz
BW (-3 dB) 100 MHz =80 MHz
Pg 14 dB =15 dB
NF 7 dB 3 dB
Dynamic range -103 dBm to —14 dBm —106 dBm to

[BW (-3dB) = 4 MHz] -32 dBm
Size <0.18 in.3 <0.03 in.3
Power supply 24 V at 12 V at

18 mA 8 to 10 mA
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Figure 12. Single-stage, 500-MHz IF Prearnplifier_Jl
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Figure 13. Single-stage, 500-MHz IF Preamplifier, Schematic Dia.grarn4

A monolithic version of the two-stage amplifier of Figure 15 is shown
in a cross-sectional view in Figure 16. The appearance of the amplifier
in monolithic form is shown in Figure 17. This design along with the results
of breadboard tests indicate that the final form of the amplifier will meet
design requirements. The complete circuit will be on a single silicon
substrate, with all components (transistors, capacitors, resistors, and
inductors) fabricated by selective epitaxial deposition.

32




—

=4

500-MHz IF Pre

amp

4
A

1

e

1e

B &

4




CS

Q2 {_{)
c3 OUTPUT
INPUT o_lm{ _I |m/ I s lcts

ca
c2 cs L2 L3
R3
R4 RS éRG

d— <
c7 R1 QR2

TN

/777 Ve

34120
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SECTION IV
STRIPLINES

A, GENERAL

Recent advances in high-frequency transistor techniques indicate
that integrated circuits using transistors with a maximum frequency in the
region of 0.5 to 5 GHz will be fabricated in the near future. In this fre-
quency range stripline connections will be required with characteristic
impedances between 50 and 200 ohms. The dimensions of striplines with
these characteristics—considering frequencies in the lower gigahertz range —
are entirely compatible with integrated circuit dimensions.

In addition to the standard circuit elements for integrated circuits,
there must be available transmission line components such as couplers,
transforming sections and filters. With processes and materials compatible
with other circuitry components, these components must be fabricated from
transmission line sections having low loss and well defined characteristic
impedance properties.

B. CHARACTERISTICS OF STRIPLINES

L. Characteristic Impedance

The flat-strip transmission system, upon which the microwave
printed circuit technique is based, evolves fundamentally from the coaxial
transmission system. A cursory examination of the flat-strip line would
lead one to believe that the capacity of the line, which determines its
characteristic impedance, could be readily calculated from the parallel-
plate capacitance formula. For wide, low-impedance strips this is true,
but for strips which have characteristic impedance in the order of 50 ohms,
the capacity due to fringing effects at the edge of the center conductor is
an appreciable portion of the total capacity and produces a noticeable effect.
As the strip is narrowed, for even higher impedance, another effect becomes
apparent, namely, interaction betweenthefringingfields at the two edges
of the center conductor. This effect, which becomes appreciable for very
narrow strips, must be taken into account in the analaysis of high-impedance
transmission lines.

The flat-strip line, 12 1ike the coaxial line, operates in the
TEM mode. For engineering applications the most important characteristics
of any transmission system operating in this mode are the velocity of
propagation V and the characteristic impedance of Z_, which can be cal-
culated from the known relation

z, = NL/C . (1)
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The velocity of propagation of the principal mode in such a transmission sys-
tem is given by the relation

1
Vp = — . (2)
LC
Combining Equations (1) and (2), we obtain
1
ya = —— (3)
o
VpC
The velocity of propagation is also given by
Vo
Vo= — (4)
P e

o Cv, CV,
In the MKS units these equations are:
V. = 3—X1—08 m/s (4a)
e
Z, = Vi€ g ohms (5a)
3C X10
where
L = inductance per unit length
C = capacitance per unit length
Z, = characteristic impedance
B = relative permeability (equal to 1 for free space and most dielectrics)
€ = dielectric constant (equal to 1 for free space)

Vp = velocity of propagation in material with properties u and €.
An approximate calculation based upon the well known parallel-plate

capacitance formular is instructive and gives some insight into the operation
of this type of transmission system. The use of this formula to compute the
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characteristic impedance is permissible for an impedance below 25 ohms.
The fringing field capacitance becomes an appreciable portion of the total
capacitance for impedance greater than this and must be utilized in the
calculations. Under these conditions the total capacitance C would be

C = Cppt+ Cy (6)
where
C¢ = f(W,t/D) fringing field capacitance per unit length in pF/m
C = capacitance per unit length of line in pF/m
Cpp = parallel plate capacitance in pF/m.

When this capacitance is combined into the equation for the capacitamce1 of
three parallel planes, which is

oI

Q)
i

35.4 € pF/m , (7)

PP

I
ol

we obtain
w
D

C = €{35.4 + Cel, (8)

t
-9
and the impedance obtained from Equations (8) and (5a), Figure 18, is

J7( - 5)

Z = (9)

o) 8 w t
3X10 E5.4 B +(1—B)Cgl€
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where

W = center conductor strip width in cm
D = plate spacing in cm
t = plate thickness in cm.

If we let Cf equal a constant, which is determined experimentally,
the formula for the characteristic impedance will hold up to 100 ohms, at
which point the interaction between the fringing fields becomes important; it
is then a function of W/D and t/D.

Equation (9) will yield good results for small values of t/D. It
appears, however, that the exact equations found by Batesl3 are needed for
calculating €y Z, for values of t/D greater than about 0.25 and for values
of W/D less than about 1.0,

The exact expressions found by Bates are:

W _ 2K I:kz sn (a) cn (a) _ Z(a£|
D T dn (a)
t _a 2K! I:k‘2 sn (a) cn (a) 3 Z(a]
D K T dn (a)
where
sn (z), cn (z), dn (z) = Jacobian elliptic functions
K = real quarter period of sn (z)
jK' = imaginary half period of sn (z)

Z(z) = Jacobian Zeta function

k = modulus of the elliptic functions.

The most convenient way of evaluating these formulas was found
to be the following:

Assume a value of Z
From Figure 19 find the corresponding value of cn (a)

Substitute this value of cn (a) into the two equations and
calculate W/D and t/D for several values of k.

Bates calculated a few of these values and Figure 20, a plot of
the results, shows values of t/D versus W/D with ’\kr ZO as the parameter.

2. Physical Limitations

Since all microwave lines and components have practical
limitations on their physical size, it is expected that striplines would also.
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For the dominant mode (TEM) to exist, certain conditions must be met; these
apply both to certain dimensions and to the symmetry of the structure:

(1) ground plane spacing must be less than half a wavelength, (2) equivalent
electrical width of the strip conductor must be less than half a wavelength,
and (3) the center strip conductor must be approximately centered between
the ground planes and must be approximately parallel to them. This
parallelism is important for high Q applications, such as resonators, where
an extremely small radiation loss in the parallel plate TEM mode or TE
mode can have significant effect on the Q.

When the ground plane spacing equals or exceeds half a wave-
length, higher order modes can propagate and radiate to free space or
couple to other circuits. This must be avoided.

If the electrical width of the strip exceeds half a wavelength,
higher order modes with circumferential variations can exist on the strip
in a manner similar to that of a large coaxial line. The electrical width is
greater than the physical width of the strip because of fringing effects at
the edges.

Tolerances on centering a strip conductor between ground planes
may be quite loose without harmful effects. On the other hand, the tilt of the
center conductor is very critical in high Q applications. To alleviate the
tolerances on tilt, metal posts or barriers can be used to prevent propaga-
tion between ground planes of high-order TE and parallel-plane TEM modes.
This is usually unnecessary in low Q or matched applications.

3. Types of Striplines

Although striplines have been called by many different names,
they always refer to the same type of geometry. Figure 21 shows some of
the geometry and names of the most commonly used striplines, which will
be investigated in the following subsections. Merits of the principal forms
of striplines are summarized in Table IV. 14

a. Sandwich Line

When the center conductor of the sandwich line is limited
to a very thin center conductor, such as metal foil or a printed conductor,
it has the same characteristics as the flat-pack triplate mentioned pre-
viously. This system is ideally suited for the printed circuit technique and
has been widely used by the Air Force Cambridge Research Center.

b. Sheet-supported or Compensated Stub-supported
Transmission Line

These lines are of value when the losses due to a continuous
dielectric sheet cannot be tolerated, when the weight of the structure is of
prime importance, when the center strip is to be thick, or when high power
is to be carried by the system.
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Figure 21. Microwave Striplines: A. Sandwich line, dielectric sandwich trans-
mission line; B. Sheet-supported or compensated stub-supported transmission
line; C. Dielectric sheet-supported transmission line, stripline, double metal-
clad line, high O triplate; D, Microstrip, half section; E. Balanced line.
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c. Dielectric Sheet-supported Transmission Line or Stripline

This type of arrangement offers very low losses, because’
if the two strips are connected in parallel at the input and output of the circuit,
the electric field from each strip conductor is to its corresponding ground
plane and only fringing fields exist in the dielectric sheet. However, in a
resonant structure strong fields exist at voltage maxima, especially in coupling
regions, and it is the practice of some manufacturers to remove the dielectric
from these regions. This type of structure offers high Q's because the con-
ductor losses are the only important ones; therefore this type of line permits
the design of high O components such as microwave filters.

d. Microstrip or Half Section

Microstrip is a wideband transmission system developed
as a substitute for waveguide or coaxial lines, especially for the development
of microwave components and microwave circuitry. Microstrip also offers
low O's and allows the manufacture of microwave plumbing to be reduced to
a printed circuit technique capable of great accuracy, adaptable to mass
production, and resulting in a great saving of cost, space, and weight.

C. APPLICATIONS OF STRIPLINES

1. Hybrid Ring

A hybrid ring may be formed (Figure 22) if four striplines at
quarter-wavelength intervals are joined onto a ring having an impedance
times that of the lines and a mean circumference of one and one-half N2
wavelengths. A signal originating at arm A of Figure 22 will split its power
into two paths traveling around the ring, combining at B and D in phase and
out of phase at C. Similarly, a signal starting at arm C divides and arrives
in phase at B and D and out of phase at A; hence, the hybrid ring may be
used as a balanced mixer by feeding in a signal and local oscillator in
arms A and C and placing crystal holders at B and D. If the hybrid is used
as a mixer, it should be noted—when a signal is injected in arm A of some
power K—that the power out of arms B and D will be down slightly and
equal, but at arm C the power will be down considerably (20 to 30 dB or
even greater). The VSWR looking into arm A, with the others terminated
in a matched load, will be low.

2. Directional Couplers

A typical directional coupler is shown in Figure 23 and has
been found to be quite satisfactory. The parameters which affect the coupling
are the separation X of the two lines, the length L over which the separation
is maintained, and the angle 6 between the arms. A signal entering arm A
will travel to arm B, and a predetermined portion of this signal will appear
at arm C. There will be zero output at arm D. If the main signal travels in
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Figure 23. Directional Coupler

the reverse direction, from arm B to arm A, the small coupled signal will
appear at the arm which was isolated in the first case.

The coupling of a directional coupler is the ratio of the input
power to the coupled output power expressed in decibels. Thus, if the power
output of arm C is 1/100 of the power into arm A, the component is a
20-dB coupler. It should be noted that the power output of arm B must be
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reduced by the amount coupled out of arm C. The directivity, as measured
by the difference in power levels in arms C and D, is dependent upon the
angle 0: the smaller the angle, the greater the directivity and vice versa
(up to 90 degrees).

Another type of coupler, shown in Figure 24, is commonly
called a '""branch line coupler.' Ports A and D are isolated. The coupling
and the matching of this device are determined by the characteristic impe-
dance of the branches. Increasing the number of branches increases the
bandwidth and the directivity. The outputs are in quadrature here as they
were in the parallel type of coupler.

3. Filters

There is no basic difference in techniques between stripline and
other types of transmission-line filters. However, if the fullest possible
advantage is to be taken of printed-circuit techniques, all the elements should
be in planar form. In itself this is not a serious restriction, for there exists
an adequate range of such elements. On the other hand, since the designer
has only two dimensional freedom, he is frequently restricted in regard to the
range of electrical values possible. This can, of course, be overcome by a
local reduction of the ground plane spacing, but mechanical complications
of this kind are undesirable.

Another important consideration is the Q factor of the elements,
and in this respect a high Q triplate line has a definite superiority. In the
first place the dissipative losses are a good deal lower, and second, it is
easier to limit the loss by radiation or mode conversion. This does not,
however, exclude the possibility of satisfactory filters in microstrip. In the
case of low-pass filters it is not essential for the elements to have a very
high Q factor; it is sufficient that the elements have no marked tendency to
radiate. In the case of band-stop filters, it has been found that the problem
may be circumvented quite successfully by fabricating the critical elements
as enclosed cavities which are coupled to the microstrip line by suitable means.
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4. Power Dividers

The use of the microwave printed circuit naturally lends itself
to the problem of power distribution and division. Usually these networks
are built in the form of a tree; Figure 25 shows some typical forms of power
dividers. In the first two dividers, matching is achieved by the use of
quarter-wave transformers, whereas in the third a gradual taper is used.

5. Attenuators or Matched Loads

Attenuators and matched loads are obtainable in striplines by
printing a resistive paint on the dielectric sheets prior to printing the conduc-
tors. Other ways of obtaining attenuators and loads are by attaching a
tapered piece of carbon-backed card of prescribed shape to the strip conductor.
If the position of the card can be adjusted so as to alter the amount of energy
intercepted, a variable attenuator is obtained. This is accomplished by
sliding the card laterally across the line. A hinged-flap arrangement may
be used if lateral space is at a premium.

Carbon-backed cards are satisfactory for loads, but they are
not the best material for attenuators. The properties of carbon-backed
cards vary with temperature and humidity, and they are not very rigid
unless supported. Another material being used is metallized-glass in
different arrangements.

In general, attenuators and loads involving insertion of lossy
material between strip conductor and ground plane will work satisfactorily
only if the material is homogeneous and extends the full distance between
ground plane and strip conductor.

Since all of the attenuators mentioned present slight difficulties,
it is believed where accurate and reproducible results are required, a
precise attenuator as developedby Dukesl4(microstrip short-circuitry piston)
would prove the most satisfactory.

D, ADVANCES IN INTEGRATED CIRCUIT STRIPLINES

Microstrip 15 16,17 has been developed as a substitute for waveguides
or coaxial lines, especially for the development of microwave components
and microwave circuitry.25 As indicated in Table IV, microstrip is used
extensively throughout industry.

At the present time Texas Instruments is investigating integrated-
circuit striplines, some of the findings of which are presented in the follow-
ing paragraphs.

In a recently completed investigation, '"Fabrication of Microstrip
Interconnections for Microwave Hybrid/ Monolithic Circuits, 118 two con-
figurations of the microstrip line were considered (Figure 26). The first
type (A of the figure) was fabricated from a semiconductor slice, with the
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Figure 26. Microstrip Transmission Lines!8

ground plane and top conductor deposited on each side of the slice. The
semiconductor slice serves as the dielectric for the transmission line. This
structure is easily applied to integrated circuits since the top conductor is
coplanar with the contact surface of the active devices on the silicon surface.

The second configuration (B of the figure) was considered in order to
eliminate the semiconductor material from the transmission line. The ground
plane for the transmission line is deposited on the surface of the semiconductor
material containing the active elements. An insulator is deposited above the
ground, and finally the top conductor is deposited. Since the semiconductor
surface is coplanar with the ground plane instead of the top conductor, pro-
visions must be made for connecting the top conductor to the active devices.
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These devices (Figure 26) were fabricated with three different materials:
aluminum, molybdenum-gold, and vanadium-silver. The Figure 26B stripline.
was fabricated with a quartz dielectric and aluminum conductor.

The microstrip lines were evaluated by measuring the power dissipated
by a section of transmission line. Slices with each conductor in various
thicknesses were prepared with top conductor line widths of 1, 2, 4, 6, 8
and 10 mils for each slice. Coupling between adjacent lines was prevented
by keeping the lines sufficiently separated. Figure 27 shows a typical slice
prepared for measurement,

Power measurements at 9 GHz were made on each slice using standard
insertion loss techniques.l9 Pressure contact was made by a pin protruding
from each side of a test fixture.22 Ground connection was made by the body
of the fixture which is grounded to the outer connector of the input and output
lines.

The loss at 9 GHz for various thicknesses of vanadium-silver,
molybdenum-gold, and aluminum lines is shown in Figure 28. The loss
is proportional to the bulk resistivity of the materials involved and increases
rapidly for film thickness less than 50 microinches. Since the skin depth
for these materials at 9 GHz is between 27 and 35 microinches, the minimum
loss for each conductor system is approached when the thickness of the
film is approximately two times the skin depth at the operating frequency.

Figure 29 shows the loss for quartz dielectric microstrip lines. For
thin dielectric layers the loss is very high, but decreases to acceptable
values for films approximately 2 mils thick. Loss in the conductors is
included in the values given.

The measurements cited were taken in a 50-ohm test system with a
microstrip line that had a 6 -mil-wide conductor. For this case the VSWR
was less than 1.10 at the input.

From the foregoing findings, it is evident that low-loss interconnections
for microwave integrated circuits can be constructed as sections of micro-
strip transmission lines. All the types of material used are suitable for
fabricating microstrip lines, with the loss in each case being proportional
to the bulk resistivity of the principal metal.

E. APPLICATION INFORMATION
Recent investigation of striplines applications by Texas Instruments
have made information available on several different types of stripline devices.
1. Power Dividers

Some types of power dividers take on different forms for use at
different frequencies. This is shown by the N-way power divider which was
built in both lumped-constant and distributed transmission-line form.
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The types considered are referred to as resistive, reactive, toroid, N-way,
branch line, coupled line, and hybrid power dividers. The results of the

findings from a MERA investigation on these power dividers are presented
in Table V.20

2. Stripline Terminations

In the design of power dividers with isolation, dissipative
terminations or resistors are needed. In order to ensure terminations of
low VSWR, several test pieces were built for measuring film resistors
fabricated especially for stripline. Two types of termination were considered,
one with the lines behind the resistor shorted directly to ground as close
to the resistor as possible and the other, a quarter-wave open-circuited
stub behind the resistor. Both approaches provided VSWR's of less than
1.1 at all frequencies up to 2.125 GHz (typical values being 1. 05), with the
quarter-wave stubs being slightly better. At 8.5 GHz only the quarter-wave
stub was satisfactory (1.04 VSWR), the shorted line giving 1.7 VSWR.

Both wide and narrow versions of Filmohm resistors were used. Generally,
it was found that use of transmission lines and resistors of approximately
the same width resulted in better VSWR's.

In addition, some EMC pill-type terminations were tested.
These were satisfactory up to 500 MHz with less than 1.08 VSWR, but the
VSWR become 1.3 and greater at 2.215 GHz and above.

3. Meander Lines

A meander line is a transmission line which has been folded
or compressed in order to conserve space or to achieve a desired phase
shift in a relatively small space. Such a device may be desirable in a system,
especially at 125 and 500 MHz where a quarter -wavelength of line is pro-
hibitively long.

In stripline, the meander line may be in the form shown in
Figure 30. It is evident from the figure that various degrees of coupling
may exist between the elements of the meander line, depending upon the
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Figure 30. Meander Line
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spacing between elements; this coupling has the effect of reducing the
effective phase shift across the meander line and also of lowering the impe-
dance of the line. Equations have been derived which relate the effective
phase across the meander line to the physical length of a meander element;
another equation relates image impedance of the meander line to physical
length of one meander element.

It is relatively simple to determine the characteristics for a
given design. Many lines will have electrical lengths from 10 to 90 degrees
and characteristic impedances from 15 to 115 ohms. Only a small number
of designs are required, and accordingly, the design procedure employed
uses a trial-and-error selection in conjunction with a limited computer
program. This procedure will normally enable the synthesis of a meander
line of specified electrical length a and specified image impedance Z; in
20 to 30 minutes. Test sections have been built and tested at 125 MHz.

The results verified the analytical procedure.

4, Material Considerations

After a preliminary evaluation of the various stripline materials
available, three materials were selected for detailed evaluation.

These are glass-Teflon, Rexolite and Polyguide. The relative
attenuation values of these materials over the frequency range of interest
are shown in Figure 31. 20 It can be seen that Polyguide is the most desirable
material to use from the standpoint of loss. Table VI summarizes the
characteristics20 of the materials and notes the impedance and phase varia-
tions due to the allowable tolerances.

Where possible, single registration should be used to eliminate
the problem of obtaining close alignment of the image circuits required in
double registration. The only problem noted in using single registration is
that no air gap can be allowed between the circuit board and its ground plane
board. One-ounce copper-clad was selected because of the undercutting
problems encountered in the etch process on boards with two-ounce clad
or greater. Etching problems are due to the etching tolerance required and
the severe warpage which occurs in Polyguide and Rexolite.

Stripline resistors are required in the hybrid power dividers
to obtain isolation between outputs. So far only two vendors have been found
to manufacture these resistors, Filmohm and EMC. The standard Filmohm
resistors are too wide for high-frequency, low-VSWR use. The standard EMC
resistors are 0.012 to 0.040 inch thick, requiring the stripline material to
be milled out to accept them.

Some effort was applied to the use of 0.1-watt composition
resistors, and it seems likely that these inexpensive resistors can be used
at the lower frequencies at least.
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Table VI. Tolerance Analysis of Stripline Design and Manufacture

Tolerance
Teflon-Glass Rexolite 1422 Polyguide
1/16 in., 1 oz, 1/16 in., 1 oz, 1/16in. or1/32in.
e = 2.6 e = 2.53 l oz, e = 2.33
Board
thickness +0.002 in. +£0.002 in. +0, 001 in.
(1 board)
Di )
telectric +0.05 in. +0.001 in. +0.005 in.
constant
Drawing £0.001 in. — -
Etching +0,0014 in. —_— -

Impedance var-
iation (nominal
50-ohm line)

Method of
Calculation

Increase ZO by increasing board thickness or by
decreasing strip width or dielectric constant

Teflon-Glass
1/16in., 1 oz

Rexolite 1422
1/161in., 1 oz

Polyguide

1/16in., 1 oz

1/321in., 1 oz

47.7 to
51.5 ohms

~2.945 to
+3.44 deg

48.2 to 49.8 ohms 48.25 ohms
52.2 ohms to to
52.8 ohms 51.5 ohms
—-0.048 to -~0.2325
+0.723 deg to
+0.464 deg

Attenuation Comparison (See Figure 31)

Teflon-Glass

Rexolite 1422

Polyguide

tan 6 given on
data sheet for
0.001 GHz,
it is about five

times tan 6 for
Rexolite at 0.001

and

Calculated from
known values of
tan 6 given on
Rexolite data
sheet from 0.1
to 10 GHz.

GHz; tan 6 assumed
to be five times
that of Rexolite at
1 GHz.
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SECTION V
THIN-FILMS

A, GENERAL

In a number of areas thin-film passive components such as resistors
and capacitors offer distinct advantages over their diffused counterparts.
Circuit requirements in many instances cannot be met with diffused resistors
and capacitors, and in these instances, the advantages of thin-film components
can be exploited. There are essentially two reasons for using thin-films.

First, it may not be possible to achieve the desired characteristics
for the diffused resistor or capacitor whereas the characteristics can be
achieved in thin-films. Thin-film capacitors provide improved characteristics
in the areas of improved temperature coefficient, reduced dissipation fac-
tor, reduced parasitic capacitance, higher breakdown voltage levels with
greater consistency, reduced sensitivity of capacitance to voltage level,
lower series resistance, and higher frequency of operation. Similarly,
thin-film resistors offer wider range of sheet resistance, reduced distributed
capacity, improved temperature coefficient, higher voltage breakdown, and
a much greater high-frequency operating limit.

Second, though it might be possible to achieve the desired characteristics
with diffused components, the required diffusion would seriously degrade the
transistor parameters. In effect, this limits the flexibility of the diffusion
process for optimizing transistor parameters; for instance, if a transistor
with a high hg, is required, a narrow base width is necessary. A diffused
capacitor on the same substrate would thus have a thin diffused region over
the large surface required to achieve the desired capacitance. Low yields
would result because of the difficulty in maintaining the thin-diffused region
over a large area. In another case, where a good low-level transistor
is required, a low-concentration base diffusion is necessary. A resistor
formed with this low-concentration diffusion would have a high temperature
coefficient that would be unacceptable in many applications. In both cases,
the use of thin-film passive components would allow the diffusion process
to be tailored to the best transistor design.

Two approaches are used to apply thin-film resistors and capacitors
to thin-film/monolythic circuits. In one approach, the resistors and
capacitors are deposited on one or more silicon substrates, with the active
devices contained on other substrates. This multichip approach is the
older and more versatile of the two. In the second approach, the thin-film
passive components are deposited with the active devices on the same
substrate. This approach represents the ultimate integration of thin-film/
monolythic circuits, but requires modified assembly processes to prevent
damage to the films due to conventional high-temperature assembly
processes.
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In the following subsections, the characteristics of thin-film resistors
and capacitors suitable for use in the microwave region are presented and
compared with their diffused counterparts.

B. RESISTORS

Typical equivalent circuits and geometries for the thin-film and
diffused resistors are shown in Figure 32. The diffused resistor can be
used as an integral part of the monolithic circuit or on a separate substrate
for incorporation into hybrid circuits; both uses are shown in Figure 32.

The equivalent circuit for the diffused resistor for use in hybrid
circuits consists of a small series lead and contract resistance plus the
main diffused resistance. Associated with this main resistance is a
distributed capacity and diode to the substrate. Most of the problems with
this resistor are due to the high parasitic capacitance, which results
from the reverse-biased junction used to obtain isolation for the resistor
from other components on the same substrate. This parasitic junction
capacitance is on the order of 0.1 to 0.2 pF/mil2 and is the main reason
for the limited application of diffused resistors at high frequencies.

When diffused resistors are incorporated into monolithic circuits,
the equivalent circuit is more complex, as shown at B of Figure 32. In
this case a distributed transistor becomes a part of the circuit. As shown
in the typical geometry, the N-type region becomes the base of this dis -
tributed transistor, which has a relatively low hfe due to the thickness of
the N-type diffusion—on the order of 1. The base-emitter junction must be
kept reversebiasedto avoidthe possibility of forward biasing resulting from
leakage. If this is not done, shunt leakage between the resistor and the
substrate will occur.

The equivalent circuit for the thin-film resistor, C of Figure 32,
is much simpler (only the distributed capacity to the substrate is shown).
This capacity is much lower than that associated with the diffused resistor —
at least an order of magnitude. Because the films can be made with higher
sheet resistivity than that obtained with the diffused resistor, the area
covered can be smaller and the distributed capacity can be reduced to a
very low value.

A large number of materials have been used in the fabrication of thin-
film resistors, notably, metal films, nickel-chromium and tantalum, and the
cermet material, tantalum-tantalum pentoxide. The chief advantages of
cermet are its higher sheet resistivity, greater stability, and compatibility
with the high-temperature integrated circuit processes of bar mounting and
ball bonding. Because of the small size of resistors normally required in
microwave circuitry, the higher sheet resistivities are not essential; where
the higher sheet resistivity can be used, however, the distributed-capacity
effects will be less because of the smaller area. A disadvantage of cermet
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ALUMINUM
METALIZATION

SiOp Si 02 SiOy
O——A N N0
|
K -TYPE SILICONJ
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— A0 SUBSTRATE

A. DIFFUSED RESISTOR FOR HYBRID CIRCUITS

ALUMINUM
METALIZATION
Sios SiOs Si05
P P-TYPE
SILICON
N-TYPE
N LAYER
I N-TYPE SILICON
P
I P-TYPE SILICON
SUBSTRATE
B. DIFFUSED RESISTOR FOR MONOLITHIC CIRCUITS
RESISTIVE FILM
Si0 ‘
\2 — ]
o NN AN -Q
——MW——0 SUBSTRATE
SILICON
34101 C. THIN-FILM RESISTOR

Figure 32. Equivalent Circuits and Geometries
for Diffused and Thin-film Resistors
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is its relatively high temperature coefficient of resistance (=20 to —1000

ppm/°C) as compared, for example, to that of Nichrome (0 to +100 ppm/°C).

An advantage of tantalum film resistors is that the resistance value can be
trimmed by anodizing the film. With the other two materials, scratch patterns

must be used to trim the value of resistance if precise tolerance is required.

All three materials have been used at Texas Instruments with good results.
For the most part, the metal film resistors have been used on substrates
separate from the active components where the resistors were not later
subjected to the high temperature processes mentioned.

1. Characteristics

The high-frequency performance of the diffused resistor is
limited primarily by the distributed capacity associated with the reverse-
biased junction previously discussed. The amount of capacity per unit area
is a function of the voltage across the junction and the doping level on the
lightly doped side of the junction. An approximate expression for this
capacitance per unit area, assuming a step junction, is given by

qk€oN
Ct =J"zve m

q is the charge on the electron

where

k is the dielectric constant

€, is the permittivity of free space

N is the net impurity concentration on the lightly doped side of the
junction

V. is the total voltage across the junction.

A plot of Equation (1) is shown in Figure 33 for typical values of the ratio
V¢/N. Figure 33 shows further that the capacitance per square mil will
normally lie in the range between 0.05 to 0.5 pF/mil2 for the doping
levels normally used.

In general, we may define the practical high-frequency operating limit
for resistors to be that frequency where the reactance of the distributed
capacity equals the dc resistance. When this is done and consideration is
given to the sheet resistivities available as well as to the values of
resistors normally encountered in high-frequency circuitry, diffused
resistors may be used at fairly high frequencies. The important point is
that no simple statement can be made about the upper frequency limit of
diffused resistors.

Figure 34 shows the practical high-frequency limit as a function of
the resistor value and geometry. The capacitance per unit area used is the
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nominal value of 0.2 pF/mil. Z The sheet resistivity used is 150 ohms/square
and is typical for diffused resistors. The geometry using a 0.3-mil-wide
resistor naturally has a greater high-frequency operating limit because of
its smaller area. This width is the smallest that should be considered at
this time. Measurements (based on the definition in the preceding paragraph)
made on 0.5-mil resistors having values in the 3000- to 5000-ohm range
show high-frequency limits of 10 MHz to 20 MHz. These measurements
agree with the values that would be obtained from Figure 34. For small
values of resistance, with narrow line widths, operation up to a few hundred
megahertz should be quite feasible. Indeed, this is currently being demon-
strated in integrated circuit operational amplifiers.

In contrast, thin-film resistors have a distributed capacity that
is at least an order of magnitude lower than diffused resistors. 28 In addition,
the higher sheet resistivities available allow this parasitic capacity to be
held low even when large values of resistance are required. This basically
lower capacity combined with the increased flexibility in design due to the
greater range of sheet resistivity extends the useful operating frequency
range for resistors well into the gigahertz range.

In most cases, the range of sheet resistivity for diffused
resistors is governed by the base diffusion for transistors and falls between
80 and 200 ohms/square. Resistors made at the same level as the collector
or emitter are not normally used. The collector diffusion is a relatively
deep diffusion with a higher sheet resistivity, the value of which is difficult
to control. Furthermore, the temperature coefficient of resistance is poor.
The emitter diffusion has a high impurity concentration with the result that
the temperature coefficient of resistance is low but the sheet resistivity
is also low. Thus, the emitter diffusion is useful only for making resistors
of very low value. Although the sheet resistivity can be extended beyond
the range noted (by adjusting the diffusion parameters), this is not normally
done since it compromises the parameters of the transistors on the same
substrate.

Greater latitude in the choice of sheet resistivity is found when
thin-film resistors are used. Nichrome thin-films can be made with sheet
resistivities ranging from very low values (around 1 ohm/square) up to
300 ohms/square. Tantalum films are limited to about 150 ohms/square.
The cermet material (tantalum-tantalum pentoxide) is available with
resistivities up to 5000 ohms/square; this material is also more stable than
the metal films, in part due to its greater thickness. It is usually an order
of magnitude thicker than the metal films. Figure 35 shows the range of
resistivities for the diffused resistors and the three metal films.

A comparison of the temperature coefficient of resistance (TCR)
for the different resistors is shown in Table VII. For diffused resistors using
the P-type base diffusion, the TCR ranges from 1000 ppm/°C to 2500 ppm/°C
for the range of resistivities normally encountered. On the other hand, a
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Table VII. Temperature Coefficients of Resistance

Resistor ppm/°C
Diffused (P-type 1000 to 2500
base diffusion)
Nichrome 0 to 50
Ta-TapOg -20 to ~1000

200-ohm/square Nichrome film, has a TCR between 0 and 50 ppm/°C.
If required, the evaporation process can be controlled such that the TCR
can be maintained consistently within 25 ppm/°C. The cermet materials
have a relatively high TCR, —20 to —1000 ppm/°C.

Another disadvantage of diffused resistors is the often excessively
low breakdown voltage between the resistor and the substrate. This is
generally attributed to junction imperfections and is a yield problem that
increases with the area of the diffused junction and the operating voltage.

The use of thin-film resistors on top of the oxidized silicon substrate
eliminates the problem, since the breakdown of the silicon dioxide layer
ranges from 200 to 1000 volts.

The minimum width for the thin-film resistors should be not
less than 1 mil because of the difficulty in maintaining control over the
line width and preventing undercutting. As the width of the line is reduced,
the resistor tolerance increases as a result of this process control problem.
Initial tolerance ranges between 5 and 10 percent for a 1-mil thin-film
resistor. The tolerance can be reduced either by using a scratch pattern
or, in the case of tantalum, by oxidizing the film. For comparison, diffused
resistors offer a tolerance of about 20 percent.

2. Process Compatibility

Problems have been encountered when thin-film resistors are
deposited on the same substrate with active devices. The major problem
arises from the high temperatures used in the subsequent assembly operations.
The bar-mounting operation normally used takes place at 375° to 475°C
under oxidizing conditions. This environment is much too severe for metal
films and high sheet-resistance films. The film may be damaged or the
surface of the film will likely oxidize, and the resulting reduction in thickness
of the film will increase the sheet resistance. This situation is improved
by using gold-germanium preforms for mounting. The temperature required
is about 375°C, and the atmosphere is an inert gas.

At Texas Instruments this high-temperature problem has been
solved by using the more stable Ta-Ta;Og film for compatible thin-film/
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monolithic circuits in conjunction with reduced temperatures for the final
assembly operations. The bar-mounting operation, performed at 300°C,
uses an epoxy to mount the bar in the header. In addition, a technique for
ball bonding at 300°C is used; the Ta-TayOg is stabilized by baking at 350°C
for one hour prior to the ball-bonding and bar-mounting operations.

3. Recent Performance Measurements

Recently, reactively sputtered Ta-Ta;Og resistors have been
made for a breadboard of a 500-MHz IF preamplifier for the MERA program.
These resistors were made on a relatively low resistivity silicon substrate,
50 ohm-cm, which limits their high-frequency performance. Figure 36 is
a plot of the resistance versus frequency for one of these resistors,” and
also shows the resistor geometry. The resistance decreased to 63 percent
of its dc value at 500 MHz. The curve provides strong evidence that thin-
film resistors built on high-resistivity substrates should work well at much
higher frequencies.

Attempts to compare these measurements with calculations
based on the simple model used to obtain Figure 34 will show that the
resistor is performing satisfactorily at a frequency one order of magnitude
higher than would be predicted by simply determining the frequency for which
the lumped capacitive reactance equals the resistance. The general reason
for this is that the simple model does not take into account the resistivity
of the substrate and its influence on the operating frequency. Another reason,
in the specific case of the results of Figure 36, is that the substrate was
not grounded when the measurements were made. It will be possible in
many instances to use a ground plane but leave the resistors floating, which
minimizes the capacitive effects. Thus, the frequencies determined from
Figure 34 are representative of a worst case situation. Distributed line
equivalent circuits have been used to analyze the performance of resistors,
but the real difficulty comes in determining the effect of the lossy substrate.
Until this analytical approach is further developed and corroborated with
experimental results, computations based on the simple model (series
resistance and shunt capacitance) may be used to establish a lower boundary
on the high-frequency limit.

C. CAPACITORS

Typical simplified equivalent circuits and geometries for diffused, MOS,
and thin-film capacitors are shown in Figure 37. The diffused capacitor is
often made in the double sided form shown in Figure 37B. In this case, the col-
lector and emitter regions are shorted and the connection to the N-type region
is made at the point of high impurity concentration (Nt area), since this is
the area of lowest resistivity. This Nt area comes about because of the N
(emitter) diffusion into an existing N (collector) region.

One of the major problems with the diffused capacitor is the large
parasitic capacity Cp associated with the isolating N-P junction; this
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capacitance can be as much as one-half the desired series capacitance,
depending on the relative biases across the diodes. This capacitance is an .
order of magnitude greater than the parasitic capacitance of an equivalent
thin-film capacitor.

The metal oxide semiconductor (MOS) capacitor has the same sort
of parasitic capacitance found in the diffused capacitor. Its desired series
capacitance is made up of a conventional capacitor provided by the two
plates separated by the dielectric. In addition, depletion layer effects
account for an additional voltage-variable capacity.

The thin-film capacitor, Figure 37D, is free of the diode effects
associated with the diffused and MOS capacitors, but has, of course, a
small parasitic capacity to the substrate. This capacitor is much more
useful at high frequencies because of not only its lower parasitic capacity
but also its much reduced plate resistance. The series resistance of this
capacitor is about two orders of magnitude lower than that of the diffused-
capacitor series resistance. The reduction results from the use of metal
plates rather than plates composed of semiconductor material. The thin-
film capacitor is nonpolar, since no diode junctions are involved. Further-
more, its capacitance is constant with applied voltage, again due to the
absence of diode junctions. These characteristics make it a more useful
capacitor in many circuit applications.

Most thin-film capacitors have used silicon dioxide or tantalum
pentoxide (TapOsg) as the dielectric material. Both materials have been
widely used at Texas Instruments; however, high-frequency capacitors
usually have been made with SiO; dielectric. Ta»Os has been used at lower
frequencies, where the need for larger values of capacitance can be
more readily satisfied with its higher dielectric constant. In addition, the
basic dielectric properties of SiO2 hold up to about 25 GHz, while the
properties of TapOs are degraded considerably below this frequency.
Several workers have investigated the properties of titanium dioxide as
a capacitor dielectric. The characteristics of TiOp are good at frequencies
as high as 100 GHz and at temperatures as high as 300°C. The dielectric
constant is high—30 to 170. Work with this material as a thin-film capacitor
dielectric is still experimental. It is not evident that processing techniques
have been developed for controlling the value of the dielectric constant or
the loss tangent, or that the processing steps are compatible with other |
process steps in the manufacture of monolithic circuits.

1. Characteristics

The high-frequency performance of capacitors is limited by the
dissipation factor and lead inductance. The dissipation factor for diffused
capacitors is determined primarily by the large series resistance of the
high-resistivity material used for the plates. There is little that can be done
about this problem in monolithic circuits, since the resistivity required
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Figure 38. Dissipation Factor Versus Frequency for Diffused
and MOS Capacitors

is determined by transistor parameters. The dissipation factor of the MOS
capacitor is more than an order of magnitude lower than that of the
diffused capacitor because its only semiconductor plate has an order of
magnitude lower resistivity than the highest resistivity plate of the diffused
capacitor. The dissipation factors of these two capacitors as a function

of frequency is shown in Figure 38. The dissipation factor for the diffused
capacitor reaches 0.1 at about 1 MHz. Though the performance of the MOS
capacitor is better, neither capacitor is useful in the gigahertz region. In
contrast, the dissipation factor of the SiOp capacitor can be held relatively
low, since thick, low-resistivity metal plates can be used. Even so, the
ohmic lead and plate inductances limit the useful frequency range to below
5 GHz in spite of the fact that the characteristics of SiO) are useful to 25 GHz.
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Figure 39. Capacitance per Unit Area Versus Applied Junction Voltage
for the Single-sided Diffused Capacitor

The capacitance per unit area of diffused capacitors using the
single-sided structure of Figure 37A is 0.1 to 0.2 pF/milZ. For the double -
sided structure of Figure 37B, the capacitance per unit area is approximately
80 percent higher. These values only indicate the order of magnitude, since
the capacitance is a function of the total voltage across the junction and the
net impurity concentration on the lightly doped side of the junction. Using
Figure 33, which is based on Equation (1), and assuming an impurity
concentration of 10l6 per cm3 (N-type 0.5 ohm-cm material), one may
obtain the variation of capacitance per unit area as a function of voltage
across the junction (Figure 39). Although diffused capacitors have been
fabricated with capacities per area as high as 0.8 pF/milZ, the typical
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upper bound is more on the order of 0.5 pF/milZ. When consideration is
given to other requirements, such as transistor parameters, this value
drops even more,

Thin-film capacitors using silicon dioxide as the dielectric
can be fabricated with capacities as high as 0.6 pF/milZ. When TaOg is
used, the capacity can be up to 2.5 pF/mil2, A high-frequency thin-film
capacitor requires thick metalization for the plates if reasonable values
of O are to be obtained. With thicker plates, the problem of pinholes
becomes more severe and thicker dielectrics are required. For this reason,
the practical limit for capacity per unit area is in the range of 0.1 to 0.2
pl“/mil2 for high-frequency silicon dioxide capacitors.

As shown in the equivalent circuit of Figure 37A, the parasitic
capacitor acts in conjunction with the desired series capacitor to form a
capacitive divider. This parasitic capacitance is also a voltage variable
capacity, and thus the ratio of the desired to parasitic capacitance is a
function of impurity concentrations and junction voltages. With normal
concentrations, this ratio is rarely less than 1.5 or greater than 5, depend-
ing on the relative junction voltages. For capacitors used in the signal line,
this high parasitic capacitance may be a real problem. However, if the
application is as a bipass capacitor, the parasitic is no problem.

The thin-film capacitor also has a parasitic capacitance to
substrate. This is the same capacitance discussed in connection with thin-
film resistors. For an isolating silicon dioxide layer 10,000 A thick
between the bottom plate and the silicon, the parasitic capacity is 0.02
pF/milz. Should this capacity be a problem in monolithic circuits, the
thin-film capacitors can be made on separate substrates where the resis-
tivity can be high and the effect of the parasitic capacitor to substrate
minimized.

The temperature coefficient of capacitance for diffused capac-
itors is high, approximately 800 ppm/°C. MOS capacitors are slightly
better, 500 ppm/°C. Silicon dioxide dielectric capacitors have temperature
coefficients ranging from 6 to 30 ppm/°C, a marked improvement over
the diffused units.

2. Process Compatibility

Thin-film silicon dioxide capacitors have been fabricated with
aluminum plates and molybdenum-gold plates. Aluminum reacts strongly
with the silicon dioxide under high temperature conditions. This reaction
was a major problem when thin-film capacitors were made on monolithic
circuits and the subsequent high temperature operations of bar mounting
and ball bonding were performed. An initial solution was obtained by
isolating the silicon dioxide from the aluminum with a thin tantalum film.
This prevented the aluminum silicon dioxide reaction. Later, as lower

29

temperature processes were developed for the bar mounting and ball bonding,
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the tantalum depositions were eliminated. This could be done, since the
reaction is strongly dependent on temperature and is negligible at the
reduced process temperatures.

One of the problems with thin-film capacitors is a yield problem
caused by pinholes in the dielectric. The problem is intensified when thick
plates are required to maintain reasonable values of Q at high frequencies.
Substrate surface variations should be reduced as much as possible before
evaporating the bottom capacitor plate. Both chemical polishing and
mechanical polishing have been used, with the latter producing the better
result. The chief problem seems to be that during deposition the metal
tends to ''grow'' along preferred crystalline directions, resulting in surface
irregularities on the dielectric side of the bottom plate. The problem is
compounded by the need for thick plates for high-frequency capacitors.
Depending on the thickness of the dielectric subsequently sputtered onto
the bottom plate, pin-holes may develop. This is the reason thick dielectrics
are used for high-frequency capacitors. Process improvements have
reduced the pinhole problem and investigations in this area continue.

Though the problem of pinholes is not major, it currently limits the
maximum capacity per unit area available in thin-film capacitors.

3. Recent Performance Measurements

A number of thin-film silicon dioxide capacitors have been
made recently for a 500-MHz IF preamplifier. Although the preamplifier
is currently only a breadboard and as such uses the multichip approach,
it will ultimately be made on a single substrate and will be a hybrid thin-
film/monolithic circuit. The values range from 5 to 10 pF for signal
path capacitors and from 125 to 300 pF for bipass capacitors. The capacity
per unit area used is 0.1 pF/milZ. The plates are aluminum. Measurements
show no appreciable increase in Q for thicknesses greater than 300 micro-
inches. Skin depth of aluminum at 500 MHz is 150 microinches. The Q
of a 15-pF capacitor at 1 KHz is 200 and drops to 47 at 500 MHz.
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SECTION VI
LUMPED-CONSTANT CIRCUITS

A. GENERAL

In the past, microwave circuits have employed the distributed-constant
or transmission line approach exclusively because of the size of lumped-
constant elements relative to the wavelength involved. There is, of course,
no sharp line defining the boundary between which lumped-constant and
distributed-constant circuits can be used. The most fundamental consideration
is the size of the lumped constant element relative to the wavelength. In general,
the largest dimension of the element should be no more than 1 percent of the
wavelength. At 1 GHz the wavelength is 30 c¢m, which would indicate that element
dimensions on the order of 0.3 cm (118 mils) could be used. This dimension
is compatible with the size of lumped-constant circuit elements that might be
useful in this frequency range. For instance, thin-film capacitors having a
capacity per unit area of 0.1 pF/rnil‘2 can be reliably fabricated. Assuming a
square format for the capacitor and the needed values to be in the range of 5
to 75 pF, we find the dimensions ranging between 7 and 27 mils on a side.
Similarly, inductors can be made using thick-film deposition processes.
Assuming a square ''coil'' and the required values to be in the range of 0.5 to
10 nH, we find that the geometry can be less than 50 by 50 mils, compatible
with the 1 percent of wavelength criterion.

This basic size consideration is only part of the problem; the other
part is concerned with parasitic effects. For instance, inductors have parasitic
capacities to a lossy substrate and from turn to turn; resistors also have
parasitic capacities to substrate; and capacitors have series resistance and
inductance as well as parasitic capacity to substrate. These undesired '"'circuit
elements' limit the usefulness of the so-called lumped-constant elements.
The capabilities of diffused and thin-film resistors and capacitors are dis-
cussed in Section V of this report. Here we will review our experience with
lumped-circuit inductors.

B. DESIGN CONSIDERATIONS

Small inductances can be realized with flat coils such as the flat, square
spiral shown in Figure 40A. For maximum Q the ratio of D to D} is 5. A
considerable amount of work has been done with this geometry at Texas
Instruments, where the application is to a 500-MHz IF preamplifier to be
fabricated with integrated circuits.

The problem with this configuration is the need for a tunnel to make
connection to the inside terminal of the coil. The meander line configuration
of Figure 40B, which is also useful for small values of inductance, offers one
way to avoid the connection problem. If the spacing between the turns is

85



34114

AL

FLAT, SQUARE, SPIRAL INDUCTOR

i

B.

MEANDERLINE INDUCTOR

Figure 40, Integrated Circuit Inductors

86




SPIRAL

MEANDER

ACTUAL PHASE SHIFT

GEOMETRIC PHASE SHIFT
34112

Figure 41. Characteristics of Loosely Coupled TEM Lines

comparable to the spacing between the coil and the ground plane, the coupling
between adjacent sections of the meander line is on the order of 0.1. For this
case, the actual phase shift is less than the geometric phase shift (Figure 41).
For comparison, the actual phase shift of the spiral as a function of the
geometric phase shift is shown in the same figure. The figure shows that the
meander line would have to be slightly longer than the spiral for equal electri-
cal phase shifts, but the problem of making connection to the inside terminal
of the spiral is eliminated.

It is, of course, possible to realize the required value of inductance
with a short-circuited transmission line. This line is made less than a one-
quarter wavelength long, the actual length being chosen to provide the required
inductive reactance. The inductance is given by

Zo l)
L=2—nf tan(27r->—\ (1)

L is the inductance

Z. is the characteristic impedance of the line
f is the frequency of operation
l is the length of the line

A is the wavelength.
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If the line is meandered to conserve space on the substrate, then its length
will have to be slightly longer than if it were laid out straight on the substrate.
This is indicated in Figure 41.

The information presented in Figures 42, 43, and 44 may be used as a
guide in determining the geometry of the coil (area covered, conductor width,
and thickness of conductor) required to realize a particular value of inductance
while maintaining a suitably high self-resonant frequency and an acceptable
level of Q. These curves are based on established design formulas33 and involve

certain simplifications; nevertheless, they can be used to roughly approximate
the required geometry before proceeding with more exact calculations.

The curves shown in these figures are based on the geometry of
Figure 40A and assume a square coil with spacing between the edges of

adjacent conductors equal to the width of the conductor and with dimension D)
equal to zero. Under these conditions the inductance is given by

L =2.16 X10-2 DN%/3 nH (2)
where D is the length of a side in mils and N is the number of turns.

Figure 42 is a plot of Equation (2) for values of N ranging from 1 to 10
(larger values of N are not useful in the frequency range of interest here).
Also shown in Figure 42 is the relationship of spiral line width to the number
of turns and the dimension of a side. This relationship is based on the simple
geometry of Figure 40A and is given by

w = Z:% mils. (3)

The self-resonant frequency of the spiral is another parameter of
interest. It is given in Figure 43 as a function of the dimension on a side of
a coil for the same range of N and w used in Figure 42. This self-resonant
frequency is derived by determining the frequency for which the spiral,
considered to be a transmission line, is one-quarter wavelength long. The
dielectric constant of the substrate is assumed to be 4. On this basis, the
self-resonant frequency is given by

_7.38 X 107

N GHz. (4)

fo
An upper bound of the Q on the inductor may be determined by computing
the series resistance of the coil based on the resistivity of the material used
for the conductor and its cross-sectional area. This is shown in Figure 44 as
a function of the thickness of the conductor, assumed to be aluminum, for
values of N from 1 to 10. The inductive reactance used is the value corre-
sponding to afrequency one-fourth the self-resonant frequency. The frequency
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corresponding to the skin-depth thickness is also shown on the abscissa of
Figure 44. For this special case Q is given by

Q=2.82tN"4%/3 (5)

where t is the thickness of the aluminum conductor in microinches.

C. FLAT, SQUARE SPIRALS AT 500 MHz

In recent months, considerable work has been directed toward the design
and fabrication of flat, square spiral coils for use in a 500-MHz IF preampli-
fier. The results obtained at this frequency give some indication of the perform-
ance that can be obtained at higher frequencies.

Equation (2) and Figure 42 may be used to determine the geometry of
the spiral required for a specific value of inductance, but a more accurate
computation34 of the low-frequency inductance may be made using

S Nw
L,=0.02032 N2S (2. 303 1°glO_N—‘},— + 0. 2235—8-— + 0. 726) —0.02032NS(A+B) (6)

where
L, is the low frequency inductance in pH
N is the number of turns
w is the distance between turns in inches
'S is the average length of a side in inches

A is a constant determined from the ratio of the conductor diameter
to the distance between turns

B is a constant determined from the number of turns in the coil.

Coil designs based on this formula have measured inductances falling
within #10 percent of the calculated value.35 The values of inductance required
are readily obtained with the single-layer coils.

Here, the major problem is one of fabricating a coil with an
acceptable level of Q. Measured coil Q's are below calculated values for the
reason that the simple formulas available do not take into account the resis-
tivity of the substrate. Losses, of course, increase with decreasing substrate
resistivity. Measurements were made on a flat, square spiral coil of 4 turns.
An evaporated aluminum conductor having a width and conductor spacing of
4 mils was used. The inductance of this coil is about 30 nH. Table VIII shows
the results of the measurements made at 500 MHz. The conductor thickness
was chosen to provide approximately the same Q for the three different
substrates. For the silicon substrate a silicon dioxide layer approximately

8000 A thick isolated the coil from the substrate.
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Table VIII. Effect of Substrate and Conductor Thickness on Coil Q

Conductor Thickness

Material (Microinches) Q
Ceramic 200 23.7
Glass 200 22.2
5000 ohm-cm 300 25.0

P-type silicon

The same coil geometry was used on several different samples of
P-type silicon having resistivities ranging between 500 ohm-cm and 5000
ohm-cm. With a conductor thickness of 300 microinches, the coil Q as a
function of substrate resistivity was determined and is shown in Figure 45.
This figure clearly shows the importance of a high-resistivity substrate.

35

Measurements were made of coil Q as a function of frequency~”~ over
the range of 300 MHz to 1 GHz. The substrate was 5000-ohm-cm material
and the silicon dioxide layer was 8000 A. The measurements were made on
four coils, which had conductor widths of 2, 3, 4, and 5 mils; as before,
conductor width was made equal to conductor spacing. The results are shown
in Figure 46. These coils had self-resonant frequencies above 4 GHz.

The effect of temperature on coil Q was also determined. This variation
is shown in Figure 47 for the 4-mil 4-turn coil with two different conductor
thicknesses. No appreciable increase in Q has been obtained for a conductor
thickness greater than two times the skin depth. Since the skin depth in alumi-
num at 500 MHz is 148 microinches, the 300-microinch conductor satisfies
the requirement.

Significant experimental work with inductors in the 1- to 6-GHz region
is yet to be done, and techniques of applying thin and thick ferrite films to
increase the coil Q are in the early stages of investigation.

Thus, it is too early to state generally the ultimate outcome of this
work. However, for the present low circuit Q will be the major drawback of
the thick-film lumped-constant inductor. Whether this is truly a drawback
depends on the circuit function. Many applications, such as broadband
amplifiers, employ loaded-Q's that are relatively low, thus the values of
unloaded Q currently available will be adequate.
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Figure 45. Approximate Q Versus Resistivity

D. WORK IN PROGRESS

Fabrication of coils using gold conductors is planned in an effort to
achieve higher Q's. The difficulty arises here when the gold thickness exceeds
the photoresist thickness that defines the coil geometry, and the gold bridges
over the photoresist and appreciably widens the coil. Experiments using very
viscous KTFR are being conducted to allow the formation of 1-mil KTFR
plating masks.

Insulation layers of quartz, 1 mil thick, between the low resistivity
substrates and the coil will help raise the value of Q; however, the fabrication
of thick quartz films is at present a problem.
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Figure 47. Q Versus Temperature

Ferrite films are being investigated to increase the reactance of the
inductor and thereby increase the Q for a given value of inductance. A
preliminary experiment con51sted of depositing a magnetic alloy on a silicon
substrate covered by a 10, 000 A quartz insulating film. An inductor was then
deposited on the quartz. The film did not appreciably improve the Q. Further
tests are planned using thick and thin films above and below the coil. Tests
will also be made to determine the shielding qualities of YIG films.
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SECTION VII
OTHER SEMICONDUCTOR DEVICES

A. VARACTORS

1. General

Varactors are classified as semiconductor PN-junction or point-
contact diodes which exhibit a voltage-dependent junction capacitance36’ 37,38
when they are biased between the forward conduction region and reverse
breakdown. The capacitance variation of the silicon diffused junction devices
is described by
C.
Cy=C,+Cj=C,+ L

P ( Vbias>1/3
I+T

(1)

where
C; = total capacitance measured at diode terminals
Cp = package capacitance
Cj = junction capacitance

Vpias = dc bias voltage

©-
i

contact potential

Q
]

junction capacitance at 0 volts.

The normalized junction capacitance of a typical diffused junction varactor
versus reverse bias is shown in Figure 48.

The nonlinear capacitance of a varactor is useful in many ways.
Generally these involve conversion from one RF frequency to another. Two,
three, four or more frequencies may interact in the varactor, and some may
be useful inputs or outputs, while others are idlers. These idlers may be
necessary to the operation of the device, but are not part of any input or
output.

Frequency multiplication is one of the most used applications of
varactors. The varactor is excited at a frequency f, and power is delivered
to the load at a frequency Kf  for some integer K. Typical solid-state sources
deliver from a few milliwatts to a few watts of power at 1 GHz to 10 GHz or
higher, the varactor stages themselves often having as high as 90 percent
efficiency. The series resistance of a varactor limits the efficiency at high
frequencies.
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CAPACITANCE
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Figure 48. Normalized Junction Capacitance of a Typical Varactor

Another simple application is in frequency division. The varactor
is excited at f,, and the power delivered to a load is at f /K for some integer K.
The series resistance limits the frequencies at which division can take place,
the efficiency of power conversion, and the speed with which subharmonic
oscillations can grow.

Some other varactor applications require three or more useful
frequencies. If a large and a small current at frequency fp and fg, respectively,
are put through a varactor, sidebands are generated with frequencies of the
form nfp + {5, for n a positive or a negative integer. The circuit is called a
frequency converter if power flows at one of these frequencies to a load. When
the output frequency is larger than fg, it is an up-converter, and when the
output frequency is smaller than fg, it is a down-converter. A small excita-
tion at fg and at the generated sidebands produces a linear conversion, which
can be used for communication purposes. The frequencies at which this
conversion can take place is limited by the series resistance, which also
limits the gain and introduces noise at high frequencies.

The process of passing a large current at frequency fp through the
varactor is known as pumping, and the pumped varactor behaves like a time-
varying capacitance, rather than a nonlinear one. The series resistance
dissipates power because of the pumping current, and the allowable swing in
capacitance is limited by the maximum elastance (1/C) of the varactor.
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There are other applications of varactors such as parametric
amplifiers, solid-state sources of microwave power, parametrons, and
rational fraction generators. These devices and a detailed analysis of the
multiplier and divider previously mentioned are covered adequately in the
literature.

2. Application to Integrated Circuits**

a. Frequency Quadrupler

An effort has been initiated on the MERA program to
develop an integrated frequency quadrupler capable of delivering 1.0 watt
output power at 9.0 GHz with 2. 0 watts input power. The 4.5- to 9. 0-GHz
doubler inherent in the eight-varactor quadrupler circuit has been built using
independent-loop tuning. The circuit operated as a frequency multiplier, but
with extremely low efficiency. Insufficient power output prevented checking
the bandwidth of the circuit. Because of the small size of the circuit, it was
impractical to try to increase the efficiency by making changes in the circuit,
such as varying inductance or changing the varactors.

Unlike the eight-varactor quadrupler, a four-varactor
quadrupler can be breadboarded in stripline form. Although this circuit
requires a passive filter not required in the eight-varactor circuit, passive
components are readily adaptable to stripline construction and to independent
evaluation.

Two very simple doublers have been constructed using
packaged silicon varactors with ceramic substrates and Teflon-fiber glass
stripline board. The purpose of these two circuits will be to determine the
bandwidth and operating properties of simple stripline circuits as well as to
obtain experience in building circuits of this type.

Transmission line construction in which inductive and
capacitive functions are performed by suitable lengths of striplines will be
used to construct all circuits in the future. The principal disadvantage of
stripline construction for breadboard circuits is the lack of adjustments that
can be made after the circuit is constructed. In the case of the quadrupler
circuit, a crossover of two transmission lines must be made; with presently
available techniques, this is not practical in breadboard circuits. Because
of this and because of the complexity of the eight-varactor quadrupler, two
simpler approaches to the problem are being studied—a four-diode quadrupler
(with no crossover) and two cascaded doublers.

b. Varactor Design

The varactor diode effort requires design and development
of a high-frequency diode that is capable of use in frequency doubler circuits
and is structurally compatible with integrated circuit design techniques. For
use in a frequency multiplier chain, a surface-oriented diode has been
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developed by Texas Instruments on the MERA program. The surface-oriented
varactor diode structure has several unique advantages. Among these is the
extension of the heavily doped Nt and P' material into the high resistivity
substrate, thus allowing all of the effective diode area to be confined to the
low resistivity epitaxial layer. This results in the maximum possible varactor
Q attainable from the device.

Surface-oriented varactor diodes have been fabricated from
two diffusion runs. Extremely high leakage currents were observed: 0.25 mA
to 10 mA at breakdown. This may be explained by the extremely high surface
concentrations. By introducing a three-hour, 900°C dry-oxygen step
following the boron diffusion, the leakage currents were reduced to 10 pA,
and devices were fabricated from this diffusion run. Although the first diodes
were very leaky, measurements of capacitance versus voltage were taken at
1 MHz in the TI-line* package. These diodes exhibited an MOS characteristic
as expected. A typical plo1:44 is given in Figure 49.

Following these earlier experiments, low-leakage surface-
oriented varactor diodes were fabricated from two additional diffusion runs.
These diodes were made from material with high resistivity P-type substrates
(>1500 ohm-cm). The capacitance of these diodes agreed with the calculated
value within the accuracy of measurement. The effects of MOS capacitance
and low resistivity substrate material were evaluated. However, a true
evaluation of the diode performance must be made in a stripline configura-
tion at microwave frequencies. Typical data recorded from the two diffusion
runs which produced the low leakage devices are given in Table IX.

Table IX. Characteristics of Surface-oriented Varactor Diodes

Ch teristi Run 3 Run 7
aracteristic Slice 12 Slice 50
Junction area 3,37 X10~2 cm 2.52 X 10-° cm
Substrate resistivity 1500 ohm-cm, 1900 ohm-cm,
P-type P-type
(gold-doped)
Epitaxial resistivity 0.32 ohm-cm 0.39 ohm-cm
Voltage 40V 70 to 90 V
Leakage at Vg 2 to 7 pA 6 nA
Junction capacity (Vg = —6)
Calculated 0.372 pF 0.357 pF
Measured 0.58 pF 0.40 pF

“Trademark of Texas Instruments Incorporated.
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The calculated junction capacity agrees reasonably well with the measured
value. The measured junction capacity has been corrected for MOS and

package capacitance.

Following the diffusion runs which produced the low leakage
devices, surface-oriented varactor diodes were fabricated without the effects
of a parallel MOS capacitance. This was accomplished by using a modified
contact mask which confined the metal fingers to the diffused areas, thus
eliminating the metal-over-oxide contacts. The diodes were evaluated in the
umesa’* package, the third terminal being used as a guard terminal for capaci-
tance measurements. The metal case was also connected to the guard terminal
in order to minimize the package capacitance. This was found to be an

extremely beneficial step since it reduced the package capacitance from

0.30 pF to 0.04 pF.

B. PIN DIODES

PIN diodes as shown in Figure 50 consist of a thin slice of high-
resistivity (intrinsic) semiconductor material between heavily doped low-

resistivity P and N regions. The intrinsic region behaves as a slightly lossy
dielectric at microwave frequencies and the heavily doped regions act as

good conductors.

P+ REGION

f REGION

Nt REGION

34445

Figure 50. PIN Diode Configuration

The capacitance at microwave
frequencies is determined by the
area, thickness, and dielectric
constant of the intrinsic region and .
is independent of the reverse bias
voltage. The series resistance
proves to increase with decreasing
reverse bias and rises to a maxi-
mum value at about 0.5 volt forward
bias, where forward conduction
begins because of flooding of the
intrinsic region with holes and
electrons.

As the dc forward-condition
current increases, the intrinsic
region is changed from a slightly
lossy dielectric to a fairly good
conductor at microwaves. In
forward bias, the capacitance
component of the circuit disappears
and the equivalent circuit becomes
a small resistance whose value
decreases with increasing forward
dc current.

*Trademark of Texas Instruments Incorporated.
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Figure 51. Diode Equivalent Circuit

The equivalent circuit of the PIN diode (or any diode) is shown in
Figure 51. The values of the small forward bias resistance R¢ and the
small series resistance Rp in reverse bias depend on the bias values chosen.
When an external tuning circuit is added, the diode will give switching action
between forward and reverse bias states.

When the diode and external circuit are arranged as shown in Figure 52
a forward mode switching circuit is achieved, and when forward bias is
applied (Figure 52A) an RF short circuit is obtained as a result of the external
tuning capacitor Cg, which series resonates the diode lead inductance L. In
the reverse bias configuration (Figure 52B) an open circuit is obtained by
parallel resonance between the diode junction capacitance Cj and the external
tuning inductor L.
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When the diode and external circuit are arranged as shown in Figure 53,
a reverse mode switching circuit results. With forward bias (Figure 53A) an
open circuit condition is achieved by parallel resonance between the two
inductors L and L, and the external capacitance C,. When reverse bias is
applied, series resonance is obtained and an RF short circuit exists.

This type of device is presently being applied as a phase shifter in the
MERA system. In this use, the diode will be subjected to high power in both
forward and reverse bias states. In the forward bias state the PIN diode
circuit will have the same small resistance for both high and low power levels.
The RF current amplitude may be tens of amperes, whereas the dc bias current
is measured in only tens of milliamperes without current switching into
reverse bias. This is because the switching time necessary to remove the
plasma is on the order of 1 ps. The high power limit in forward bias is thus
determined by the maximum permitted IR heating of the junction.

Surface-oriented PIN switching diodes®0: 51 have been designed to allow
compatible interconnection with microstrip transmission lines on high-
resistivity silicon for a monolithic, integrated phase-switching circuit. At
microwave frequencies, stray capacitance must be reduced to a minimum to
avoid loss of component function. The use of a surface-oriented diode structure
allows the reduction of stray capacitance resulting from contacts expanded
over oxide-protected active substrates. The geometry of these diodes provide
adjacent placement of the anode and cathode areas at the surface of a silicon
chip, and the diodes have a carrier flow under bias which is approximately
parallel to the surface.

Figure 54 compares a surface-oriented microwave switching diode
with a conventional planar diode structure. In this type of application a dead
short on forward bias is needed to provide low insertion loss and low
capacitance on reverse bias so as to obtain high isolation. For the conventional
planar diode, the conduction system to make contact to the other elements of
the integrated circuit is by means of metal stripes of the required width,
separated from a ground plane by high resistivity silicon, forming a micro-
strip transmission line. The diode design must be compromised to conform
to the required geometry. Large capacitance results from design require-
ments for other diode parameters; for example, in order to reduce the diode
resistance on forward bias, a large enough anode area will result in increased
capacitance upon reverse bias. The metal contacts are expanded over oxide
protected-active substrates, thereby further increasing the capacitance. In
the case of the surface-oriented diode, we have anode and cathode diffusions
into the high-resistivity silicon and metallic contacts in opposite directions
to form the microstrip transmission line. On forward bias, carriers are
injected into the I region all along the PN junction, thus reducing the series
resistance by means of conductivity modulation. On reverse bias, we have in
effect a number of parallel capacitors with the maximum capacitance occurring
at the closest spacing. The reverse bias capacitance is therefore largely
determined by the depth of diffusion. In order to achieve low resistance on
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forward bias, the spacing between anode and cathode is made very small, caus-
ing the diodes to punch through on reverse bias; but the larger capacitance of

a punch-through condition is offset by the ability to control capacitance by the
diffusion depth. The surface-oriented diode conforms readily to microwave
stripline geometry and the effects of expanded contacts are minimized.

The equivalent circuit>0 for a surface-oriented PIN switching diode is
shown in Figure 55 and consists of a 6-mil stripline, 10-mil high-resistivity
substrate, ground plane, and anode and cathode region. The diode may or may
not be constructed in selective epitaxial pockets as shown. Some of our most
successful devices were constructed directly in P-type silicon, with resisti-
vity greater than 50 ohm-cm. Inthis case, the silicon substrate becomes thel
region of the PIN diode. The equivalent circuit of the diode structure only,
on forward bias, consists of the series resistance of the two metallic strip-
lines, the conductivity-modulated junction resistance and the resistance of
the I region, also conductivity modulated. All of these resistances are small.
On reverse bias, the circuit shown consists of the series resistance of the
metallic striplines, the voltage dependent barrier capacitance shunted by the
barrier resistance, a lumped equivalent of the MOS capacitance produced by
the metallic stripline, the oxide substrate, and the silicon substrate. This
capacitance is in series with the resistance of the substrate material.

When this circuit is considered as an RX meter parallel circuit,51 the
MOS capacitance and the barrier capacitance are combined into one measurable
value. One might think that a large value of MOS capacitance would completely
obliterate the small reverse bias barrier capacitance and make the diode switch
useless at high frequencies. To evaluate this possibility, typical values were
used for CB, Ry and CMOS; two different values were used for Rypy represent-
ing the substrate resistance in series with the MOS capacitance. The results
showed that the MOS capacitance essentially disappears above 10 MHz and that
only the barrier capacitance is effective.

Figure 56 shows the insertion loss and the isolation to 500 MHz RF
possible from a typical surface-oriented diode switch under conditions of
forward and reverse dc bias.?! The insertion loss is about 0.5 dB for all
values of forward current above 2 mA, and the isolation is approximately
20 dB at -5 volts bias. The RF power incident on the diode was 1 mW. The
measurements were made on a nine-finger diode.

A family of curves®! for different bias levels is shown in Figure 57.
The isolation is constant until the diode self-rectification of the incident RF
voltage produces a peak large enough to overcome the negative dc bias. At
2 watts into a 50-ohm load, the peak power is 14 volts. For 5 and 10 volts
negative bias, essentially constant isolation was obtained out to approximately
100 mW, and at 20 volts negative dc bias constant isolation was found to
approximately 1 watt of RF power. These diodes are 6 mils wide and
approximately 7.5 mils long.
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C. SCHOTTKY BARRIER DIODES

Schottky barrier varactor and mixer diodes are well suited for use in
integrated circuits in the microwave region. As a planar structure using the
properties of a metal semiconductor junction, the Schottky barrier exhibits
the properties of an abrupt junction rather than the graded-junction character-
istics of the diffused junction devices. The capacitance variation of the abrupt
junction is

C.
= = JO
ct_cp+cj_cp+< Vbias>1/2 (2)
1 + ———
¢

where

C, = total capacitance measured at the diode terminals

Cp = package capacitance
Cj = junction capacitance
Vibias = dc bias voltage
¢ = contact potential
Cjo = junction capacitance at 0 volts.

The use of thin epitaxial layers in conjunction with planar Schottky
barrier junctions has produced very high Q microwave devices. With the
barrier metal extended over a silicon dioxide insulating layer, this ''expanded'
contact is wirebonded to eliminate the metal springs that are found in the
very small mesa structures on point contact diodes of conventional construction.
The structure of the diode is shown in Figure 58.

The relative quality Q of a varactor is defined in terms of its cutoff

frequency:

f
0 =—§—° (3)
(o]

P S
co = ZWRSCJ-

L)
1

frequency of operation.

To be of high quality, a varactor must have a high cutoff frequency;
therefore for a fixed capacitance, it must have a low resistance. The Schottky
barrier device can be made from several different semiconductor materials,
such as GaAs, Ge, and Si. Because of the difference in electron mobility,
there are differences in the total resistances of the devices. The GaAs
Schottky barrier device has very high cutoff frequencies. These higher cutoff
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frequencies seemed to be desirable

for parametric amplifier work, so a
GaAs Schottky barrier varactor was
used as the active element in a K -band
nondegenerate parametric amplifier;
the results improved the state of the
art.>4

Because the Schottky barrier
varactor appears to be an abrupt junc-
tion, the Fourier capacitance ratio ¥
should be higher than it is for the
conventional GaAs varactor. This
proved to be true. The minimum 7 of
0.4 was calculated from the noise figure
data and the cutoff frequency obtained
OPES?\'LI_NG from characterizations of the diode.
Figure 59 is a plot of the minimum
noise figure with the cutoff frequency
] ] 1 as the variable; the following is the

(o] 100

34002 CUTOFF FREQUENCY (GIGAHERTZ)

200 300 400 minimum noise figure equationd2

solved for 7:

Figure 59. Cutoff Frequency
Versus Noise Figure

where

cutoff frequency = f_g

(EP_ _ 1) 1/2
fs

Y min > 172 = Fourier capacitance ratio (4)
o (1 fs i)
fp F
B 1
ZWRSCJ'
. fco
quality of the varactor = Q =
f_(K)
=2.5

pump frequency EP_

signal frequency fg

Fourier capacitance ratio = y = 0.4

increase in capacitance of the varactor due to pumping = K~ 1.3.
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Figure 60. Experimental One-sided Schottky Diode

The Schottky barrier varactor should also be able to fulfill the multiplier
functions described in Subsection A. High efficiencies can be obtained in this
function because of the high Q's and breakdown voltages obtainable in the
Schottky barrier. Also, when the forward characteristics of the Schottky
barrier are optimized, the device acts as an efficient, low-noise mixer diode.

Using these two functions of the Schottky barrier and the effects described
by Gu.nn,55 Texas Instruments has begun a program to develop a millimeter -
wave receiver front end in a functional electronic block. This functional elec-
tronic block will consist of a Gunn-effect oscillator operating at 31 GHz and a
Schottky barrier varactor tripler to provide a local-oscillator signal at
94 GHz. Also, a Schottky barrier balanced mixer will be constructed to
provide the frequency conversion to an intermediate frequency. The entire
electronic block will be built on semi-insulating GaAs, with deposits of
epitaxial GaAs used for the Gunn-effect oscillator and the Schottky barrier
varactors. All circuitry will be in microstrip transmission line.

The device configuration for the Schottky barrier is shown in Figures 60
and 61. The critical features in this structure, from the materials aspect,
are (1) accurate doping control to produce a carrier concentration of
approximately 5 X 1016 cm=3 in the N-region while maintaining a high carrier
mobility in the deposit and (2) achieving reproducible layer thicknesses of
less than 1 pm (estimated thicknesses 0.25 pm and 0.7 pm). It is proposed
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that the deposition system used to prepare these deposits be the same as
that used for commercial devices. This proven system should ensure
production of the high-quality material that will be required. To achieve the
desired deposit thickness, the operating conditions will be modified to slow
down the deposition rate. With the current deposition rates (approximately
15 um/hr) a deposition run of only one minute would be required. Slower
growth rates (approximately 1 to 3 pym/hr) would be desirable for achieving
better thickness control and minimizing startup deposition differences. This
result can be readily achieved by reducing the rate of AsClj input into the
reactor. A constant check of material quality will be made during this
process modification. Selective depositions of epitaxial GaAs will be
performed to provide the junctions. No difficulty is expected in attaining the
desired geometrical definition.

Both GaAs and silicon have been used in building Schottky barrier
mixer diodes. Figure 62 shows the noise figure performance of the GaAs
Schottky barrier mixer diode (L-79) in a conventional X-band mixer. This
data is compared to that of IN23WE and 1N23G point-contact diodes.

These measurements were taken in the same test set, using appro-
priate mixer holders in each case and showing the best noise figure obtained
for more than one diode of each type. The IF noise figure was corrected to
the standard value of 1.5 dB at 30 MHz from calibration obtained with an
input resistor equal in value to that of the diode under test and connected
to the input terminals of the amplifier.

Resistance to burnout of both the IN23WE silicon point-contact diodes
and the GaAs Schottky barrier diodes was made. Two different diameters
of metal-to-semiconductor contacts were testedby means of apparatus made
according to military specification MIL-S-19500/233B. Results are shown
in Figure 63, from which it may be noted that Type 1N23WE withstood the
specified 2-erg level quite well and showed deterioration following pulse at
the 3-erg level. The Schottky barrier diodes under test in the same apparatus
showed resistance that was 3 to more than 10 times better in this comparison
run; the larger diameter contact showed better resistance.

Satisfactory mixer operation was obtained over a wide range of local
oscillator power. A change in input level from 0 dBm to —10 dBm resulted
in little change in either noise figureor in VSWR.

A single-sided silicon microwave mixer diode has been fabricated, and
is suitable for integration with a microstrip-hybrid formed directly on high-
resistivity silicon. The diodes are formed on epitaxial material that has been
grown in vapor-etched pockets in high resistivity P-type silicon substrate
material. These holes are placed selectively on the substrate; their positions
are determined by windows in an oxide layer, which acts as a barrier to the
etch where no windows exist. The holes, about 0.1 mil deep, are then
refilled with N-type epitaxy of about 0. 05-ohm-cm resistivity. Portions of
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the epitaxial region which are to act as ohmic contacts are given a heavy Nt
deposition and then molybdenum-gold is evaporated to form a metal-
semiconductor contact.

Measurements of the forward characteristics of these devices as a
function of temperature indicate that they are true Schottky barrier diodes.
Although the noise figures have been higher than those usually expected for
a Schottky barrier device, the results are early and by no means represent
expected figures of optimum value.

Performance of a balanced mixer function, in addition to the mixer
diode, requires means for mixing the incoming signal with the local
oscillator and for providing output filtering. The most satisfactory means for
mixing the signal and local oscillator is provided by a hybrid structure,
either phase reversal or quadrature. The use of a hybrid provides a mixer
with natural separation of signals and rejection against noise generated in
the local oscillator source.

The parallel-line directional coupler was investigated for X-band
balanced mixer application because its required area is considerably less
than that of the branch-line coupler. The inhomogeneous dielectric of the
microstrip construction gives rise to forward coupling which limits the
isolation available from a quarter wavelength parallel-line directional coupler.
This effect is shown in Figure 64, with a theoretical output at the normally
isolated port shown as a function of the ratio of the even- and odd-mode
velocity. For the coupling structures studied, these velocities differed from
3 to 5 percent, yielding a limiting value of isolation slightly over 20 dB. An
additional problem with the parallel-line coupler is in obtaining the necessary
even- and odd-mode impedances for 3-dB coupling. The spacing required to
obtain 3-dB coupling is at the limits of semiconductor processing techniques
and building such structures reproducibly is still an unsolved problem.

The branch-line hybrid shown is being used for developmental work,
although the parallel-line coupler is still being investigated. This hybrid
structure has isolation of approximately 20 dB over the range of 8.5 to 9.6
GHz; the noise figure is essentially that of the mixer diode alone.

Present technological advances have made the Schottky barrier the best
conventional varactor or mixer diode available. These devices have improved
the state of the art in noise figure performance by at least 1 dB in both para-
metric amplifiers and mixers. Their use in integrated circuits has been
successfully demonstrated by a silicon X-band balanced mixer constructed in
microstrip transmission line, and in the near future the performance of
integrated circuit devices should rival that of their conventional counterparts.

D. GUNN EFFECT

Gunnb55 has discovered a new kind of current oscillation at microwave
frequencies, in N-type GaAs and in InP. When a uniform electric field applied
to a bulk specimen of N-type GaAs is raised above a certain critical value, a

120




40 1~

30~

ISOLATION (DECIBELS)
N
o
]

V,/ V,

34438

Figure 64. Theoretical Isolation for Microstrip Coupler

time-dependent decrease in the current is observed. In long specimens this
decrease resembles random noise, but in short specimens it is found to be
periodic and of extremely high frequency which is determined by the specimen
length. Sufficient microwave power can be transferred to an external load to
suggest that the effect may take on technological importance. Similar effects
are found in N-type InP, but not in P-type GaAs.

Gunn observed that the period of the oscillation was related to the
transit time of the electrons through the sample; for this reason high fre-
quencies can only be obtained by using very thin samples. A typical value
for the electron drift velocity is 1.5 X 107 cm/s; hence, frequencies in the
1- to 2-GHz range would require a range of sample thickness from 42 to 85
microns. rpitaxial layers of GaAs provide the easiest means of obtaining
these thin samples.
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The application of the Gunn effect to microwave oscillators has been
investigated by Texas Instruments’® and Bell Telephone Laboratories®? with
good results. The work done at the former dealt with pulsed microwave
oscillators in epitaxial layers of GaAs, whereas that at the latter dealt with
CW microwave oscillators using GaAs.

The resulting devices that could be built would possess the advantages —
common to solid-state devices —of compactness, ruggedness, and low operating
voltage. They would also have a very wide modulation bandwidth, and their
manufacture should be straightforward because of their structural simplicity
and convenient dimensions.

At present the state of the art of the Gunn effect is limited due to difficulty
in obtaining pure material. The application to oscillators seems possible with
resulting peak power outputs of 0.5 to 1.5 watts at about 3 to 5 GHz. This will
simplify transmitter design by eliminating multipliers and drivers. A signifi-
cant point is that the stability of a device made by this process is probably
better than that of the standard oscillator. It is believed that at 1 GHz a
stability of better than 0. 005 percent can be obtained.
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SECTION VIII
HIGH DIELECTRIC CONSTANT MATERIALS

A, GENERAL

There are two principal applications of high dielectric constant
materials in the microwave frequency range. In one of these the material
has been used to reduce the size of microwave components such as cavities.
The linear dimensions of the cavity are reduced by the square root of the
dielectric constant of the material. This reduction is a result of the wave-
length in the material being reduced by this same factor compared to the
wavelength in free space. Thus, if the material has a dielectric constant
of 100, the volume reduction of the dielectric filled cavity is 1000. Single-
ended and double-ended tunable cavities have been recently analyzed using
waveguide filled with a dielectric material for part of the length but with
free-space boundaries adjacent to tunable shorting plungers.®0 High Q's
can be maintained over large tuning ranges. In this instance, the size of
the component is reduced and the flexibility of tuning is retained.

The second application of high dielectric constant materials is a
result of its resonance properties. A material with a high dielectric constant
will exhibit resonances in various modes when operated with free space
boundaries. To be useful, the loss tangent of the material must be low
in order to allow the realization of high circuit Q's. A variety of materials
can be considered for this application; however, single and polycrystalline
rutile (TiOp) is the material most generally considered. Its dielectric
constant is on the order of 100 and its loss tangent is low. The main
problem of application is the strong dependence of the dielectric constant
and the loss tangent on operating temperature. Materials such as strontium
titanate and barium titanate have much higher dielectric constants with
even greater dependence on temperature. Our main interest in these resonance
properties is in their application to filter design. The analytical expressions
for the resonance properties have been presented elsewhere;61 experimental
results and design information have also been reported.62—66

B. LLOW-LOSS HIGH DIELECTRIC CONSTANT RESONATORS

To minimize the size of the resonator, the dielectric constant of the
material should be high, since

>
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>
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—

123



160 = 100 =

150 f== 90 =
- o
w w

140 b= 80 = €1 €2

130 70

] ]
0 100 200 300

TEMPERATURE (°K)

34437

figure 65. Dependence of Dielectric Constant on Temperature
for Titanium Dioxide

where
X is the wavelength in the material

A, is the wavelength in free space
€ is the dielectric constant.

In addition, with a high dielectric constant the fields external to the resonator
attenuate rapidly with distance for any given mode. This means the radiation
loss will be small and the unloaded Q, Q, will be determined by the coupling
and dielectric losses. Thus, to a first approximation,
we
Qu = = (2)
where

o is the conductivity.

The strong dependence of the dielectric constant on temperature is
shown in Figure 65 for TiO) b1 The dielectric constants parallel and per-
pendicular to the optic axis are €] and €2, respectively. Since the resonant
frequency is proportional to the square root of the dielectric constant,
lowering the temperature increases the frequency of operation. The variation
of frequency with temperature is at least an order of magnitude greater
than that for a brass-walled cavity.
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Figure 66. Geometry and Axis
Orientation Resonator

Figure 67. Mode-frequency Chart
for Resonator

Okaya and Barash have also shown that a large number of modes may
exist in the resonator. 6l Measurements have verified computations of modes
in a rutile resonator measuring 0.1233 inch by 0.4075 inch by 0.2466 inch
£0.0003 inch. This sample was cut from a single-crystal boule, and the
optical axis was oriented with the geometric axis to within £1.5 degrees.

The orientation of the axes of the resonator is shown in Figure 66, which
also shows the conditions for the three cases considered. The mode -frequency
chart for this resonator is shown in Figure 67,

Cohn has used this phenomena in the design of microwave filters . 62
He has determined the coupling coefficients for the two configurations of
Figure 68 which use cylindrical resonators. Experimental data agreed with
computations based on single-mode and multimode theory. This was
especially true for the cases involving square waveguide where the coupling
coefficient was less than about 0.5. The waveguide is below cutoff and sim-
ply serves as a shield. The resonant frequency drops slightly as the cross
section of the waveguide is increased. For example, with a 0.393-inch
diameter resonator 0.250 inch long, the resonant frequency decreases from
3.048 GHz to 3.010 GHz for an increase of the dimension A and B from
0.750 inch to 0.995 inch., (See Figure 68A.) Under the same conditions
the coupling coefficient increases slightly. Using two resonators in the
configuration of Figure 68A, Cohn has obtained the response curves shown
in Figure 69 at a center frequency of 3.01 GHz. The sharp nulls obtained
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in one case are evidently caused by the existence of parallel signal paths,
one via the resonators and one between the probes.

Of considerable interest are the small size of these filters and the
excellent response characteristics that can be realized due to the large Q's.
The diameters of the cylindrical resonators used to obtain the response of
Figure 69 are 0.250 inch and 0.393 inch. Although this application of high
dielectric constant materials is certainly not applicable to integrated cir-
cuit form, it is of interest as an external miniaturized circuit function.
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SECTION IX
FERRITES

A, GENERAL

Magnetic oxides have become particulary important to the electronic
engineer because, in addition to their useful magnetic properties, they
possess very high electrical resistivities (P > 106 ohm-cm). Hence,
magnetic oxides can be used at very high frequencies, whereas magnetic
metals with their relatively low resistivities exhibit such severe skin effect
at high frequencies that magnetic fields do not penetrate into the bulk of the
metal; thus their inherent magnetic properties cannot be exploited. In
engineering practice, almost all magnetic oxides are called ferrites, whether
or not they contain iron.

B. MICROWAVE PROPERTIES OF FERRITES

When subjected to a dc magnetic field, a ferrite sample exhibits
less ''magnetism'' than does a similar-size sample of ferromagnetic
material. The reasons for this phenomenon appears to be that alignment of
the electron spins in ferromagnetic material is complete, whereas in
the ferrimagnetic material there is only a net number of electron spins
aligned in a given direction. Thus, more than half of the spins are aligned
in a given direction within any domain.

For iron, a microwave signal ''sees'' an effective reflector; for ferrite,
the wave can enter and pass through substantial amounts of the material
without excessive reflection or attenuation. In the process the wave has an
opportunity for strong interaction with the spinning electrons and as a result
of this interaction, nonreciprocal phase shift and attenuation as well as
nonlinear effects can, under suitable conditions, be manifested.

The vital property that makes ferrites so useful at microwave fre-
quencies is the ability to vary their RF permeability. With circularly
polarized waves, the permeability is scalar; its dependence upon a mag-
netic field H; is shown in Figure 70. The pt+(as seen by the positive cir-
cularly polarized wave) has been plotted to the right and the p~ (as seen
by the negative circularly polarized wave) has been plotted to the left of

H; = 0 axis, with Hj increasing in both directions. The permeability is
ko= plug (1)
where
pu' = relative permeability
Bho = permeability of free space;
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the permeability may be considered to be complex because of residual losses,
and p becomes

p¥ = g (w' = ju' (2)
where
p* = complex permeability including loss term
p' = relative permeability
n'' = loss term.

The real part of the permeability p' has to do with phase shift, and
p'" the imaginary part is the loss component of the permeability. In a ferrite
material saturated by a dc magnetic field, the magnetization vectors tend
to be aligned parallel to the dc magnetic field. However, when a second
magnetic field alternating at a microwave frequency is applied in a direc-
tion perpendicular to the dc magnetic field, the magnetization vector(s)
precess about the direction of the dc magnetic field and in doing so couple
energy out of the microwave field.

For resonance devices, it follows that operation would be desirable
at a magnetic field value Hj at which p'' is quite high. On the other hand,
those devices in which the ferrite acts as a nonreciprocal phase shift
element should be operated at values of H;, for which p'" is as low as
possible consistent with the required value for p'.

Polycrystalline garnets —because of their narrower line widths, lower
anisotropies and g-factors (spectroscopic splitting factor)—can be operated
at substantially lower dc magnetic fields before these low field losses become
troublesome.

Those electrical properties of greatest importance to the ferrite-
device designer are saturation magnetization M, gyro-magnetic ratio
7Y (equal to 0.0175 X g-factor in the MKS system or 1.4 X g-factor in the
CGS system), loss tangent €''/€', linewidth AH, curie temperature T., and
anisotropy field H,. Broad ranges of these quantities are commonly encountered
in both ferrites and garnets; however, only the most usual ranges are shown
in Table X.

The present state of the art in ferrite devices is limited in its applica-
tion to integrated circuits. The limitation arises from the difficulty of
achieving small dimensions compatible with integrated circuits while also
providing the external field required. Surface-oriented diodes will be used
to avoid this problem by performing several of the circuit functions customarily
assigned to ferrite devices. Examples of such devices are switches, modu-
lators, and phase shifters. Other circuit functions can be performed with
ferrite devices having small dimensions and a compatibility with integrated
circuits as an external circuit element, for example, filters, isolators, and
circulators.
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SECTION X
FILTERS

Because transmission line structures compatible with integrated cir-
cuitry can be produced in microstrip form, an important class of filters
can be fabricated in integrated circuits, namely, those using stripline
techniques. Filters may be classified as low-pass, high-pass, band-pass,
and band-stop filters; they may also be tunable or fixed tuned. Tunable filter
structures, however, are not compatible with integrated circuit microstrip
techniques. Furthermore, the problems associated with the design and
fabrication of the different classes of filters are essentially the same. For
these reasons, only the fixed-tuned, band-pass type of filter is considered
here.

Part A of Figure 71 illustrates a band-pass filter consisting of parallel
stripline resonators. These resonators are built of half-wavelength strip-
lines and are positioned parallel to each other along half of their length.
Placement of the resonators parallel to each other permits coupling to be
varied proportional to the spacing between stripes. This construction is
particularly convenient for printed-circuit techniques.

This type of filter yields a second pass-band at three times the center
frequency and has first-order poles at zero and twice the center frequency.
This structure lends itself well to printed-circuit fabrication. However,
it is very sensitive to tuning; the slightest mistuning will yield a narrow
spurious pass-band near the second harmonic. (For designs having a large
value of fractional bandwidth or designs for high-pass application, Figure
72 is applicable.)

The dual of this filter, Figure 71 A, may be achieved by placing short
circuits at both ends of the resonators as shown in Figure 71 B. Both types
have the same transmission characteristics, the main difference being in
their ease of fabrication.

Figure 72 shows another possible way of fabricating a parallel-
coupled filter with A/2 resonators. This structure consists of rectangular
bars which are supported by short circuit blocks at their ends. Such an
arrangement eliminates dielectric losses since no dielectric support
material is required. The rectangular bars afford a tighter coupling, thus
yielding larger bandwidths. The filter characteristics are similar to the
two previously mentioned. The short circuit blocks provide mechanical
support for the resonators. Functional bandwidths of 0.01 to 0.70 can be
achieved.

A more recently developed device uses a somewhat different method
of construction to achieve better characteristics. This device, called an
"interdigital filter,''consists of stripline resonators between parallel ground
planes (Figure 73). The resonators are a quarter-wavelength long and are
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short circuited at one end and open circuited at the other. Coupling is due

to the fields between adjacent resonators. Bolljahn and Matthaei’® have shown
that the mathematics describing this filter become quite unwieldly if all the
coupling effects are taken into account. Matthaei?7 et al. have a procedure
involving several additional simplifying approximations that allow straight-
forward, easy-to-use design calculations. Although the formulas are
approximate, the results of trial designs show that they are sufficiently
accurate for most applications. This filter has multiple poles at the even
harmonics, can be fabricated without dielectric material (therefore eliminat-
ing dielectric losses), and is very compact.

Perhaps the most important filtering problem in microwave applica-
tions lies in the basic notion of band-pass operation. One would like to be
able to arrange for the transmission of signals within a prescribed finite
band of frequencies while at the same time restricting the flow of energy
at other frequencies, as shown in Figure 74. This suggests an infinite
transmission barrier constructed adjacent to both upper and lower limit
frequencies of the pass-band and leaving a pass-band in the spectrum for
passage of the desired frequencies. Our concern in the microwave domain
cannot be confined to a single, finite desired band of operation such as
suggested in Figure 74. We must deal with many discrete bands of unwanted
related frequencies whose passage is not inhibited. Therefore, conventional
stripline filters are seen to have pass-bands at all odd-harmonic bands, as
indicated in Figure 75.

It is evident that special attention to the blocking of the undesired
frequencies must be provided in many cases. This usually means, for
example, the addition of a different type of structure to reject the third
harmonic. In stripline with low dielectric constants (in the range of about
2 to 4), this can be done with efficiency and in an acceptable manner.
Apparently, there are no serious reasons to prevent a similar approach
being transferred to the higher dielectrics used in semiconductor technology.
It should be pointed out that stripline microwave filters are, in general, very
sensitive to loading; that is, a close control of the impedances seen on the
input and output of the filter must be maintained. If this is not done, the
response characteristics both in and out of the pass-band may be deteriorated.

A typical "well-matched' stripline filter built at Texas Instruments
(Figure 76) has a pass-band response as shown in Figure 77 and a third
harmonic response as shown in Figure 78. These results provide visual
evidence of the filter characteristic described above.

Returning to Figure 75, one is likely to think of the stripline filter
as having infinite attenuation at all even harmonics of the pass-band. This
idealized behaviour is theoretically true for the filter configuration in
common use, but is not always easy to achieve in practice. The attenuation
functions for different component structures will, in many cases, have
their poles and zeros distributed differently throughout the frequency spectrum.
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Figure 76. Parallel Resonator Stripline Filter

Thus, the design conceived several years ago by Seymour Cohn at Stanford
University has a single pole at the second harmonic; this is one of the most
common and least complex designs. Although the pass-band characteristics
of this filter are good when it is carefully designed and fabricated, '"holes"
and spurious response at the second harmonic are almost impossible to
avoid. This particular design is important even though it is very simple to
build, being constructed essentially of parallel-coupled half-wave resonators
etched in copper on a dielectric supporting base.

A more recent design concept uses a somewhat different method of
construction to achieve an improved response characteristic. This, the
so-called interdigital filter (Figure 79), has multiple poles at the even
harmonics. The improvement in operation, however, is not achieved with
ease since the construction is difficult to accomplish in practice. This is
a consequence of the short-circuited resonators which are a part of the
structure and are important to the proper spectral distribution of the
attenuation poles.

The two cases described are intended to illustrate the type of problems
to be expected in carrying over conventional microwave techniques into
integrated circuitry. The stripline RF short circuit is very difficult to
achieve in practice, and there is no reason to believe that it will be any
easier in integrated circuits. It has been cited here as an example of the kind
of problem one may encounter in seeking the best possible filter operation.
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Figure 79. Interdigital Filter

Operational response characteristics are realistically typified by
the curves in Figures 80 and 81 which are reproduced from experimental
data obtained from a parallel-coupled, half-wave resonator filter and an
interdigital filter respectively as discussed previously. Figure 80 shows
that the parallel-coupled resonators afford an acceptable pass-band char-
acteristic, but the out-of-band response, being very sensitive to the circuit
loading, leaves something to be desired—especially at the second harmonic.
On the other hand, the interdigital filter, Figure 81, shows a much better
control of the stop-band. The superiority of this configuration in the range
of the second harmonic and nearby is obvious. Further, the shape of the
pass-band and the slope of the filter "'skirts'' at the band edges are greatly
improved for the interdigital filter as compared to the simpler filter.
This is a direct consequence of the multiple poles at the second harmonic
of the attenuation function; the poles, in turn, are realized by virtue of the
difficult construction of the stripline RF short circuit.
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PROGRAM PERSONNEL
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Albert E. Mason, Jr. Project Engineer
Louis I. Farber Engineer
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SECTION XII
CONCLUSION

Under item three of the work statement, an analysis of the technical
parameters of the various components and techniques used in the FM
telemetry transmitter, defined in item two, will be conducted. At that time,
knowledge of the capabilities and limitations of the devices, techniques,
and components which are the subject of this study will be required. Because
of the rapid progress being made in microwave integrated circuits, it will
be necessary to up-date the work covered in this report before finalizing
the design of the transmitter. Nevertheless, this study of solid-state
microwave devices, techniques, and components with application to inte-
grated circuits has formed a basis for subsequent work to be performed
under this contract.
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LIST OF SYMBOLS

bandwidth of bandpass amplifier

capacitance or capacitance per unit length
collector to base capacitance

emitter storage capacitance

fringing field capacitance per unit length, pF/m
junction capacitance (for varactors)

junction capacitance at 0 volts (for varactors)
package capacitance (for varactors)

parallel plate capacitance, pF/m

total capacitance measured at diode terminals
(for varactors)

capacitance per unit area for a PN junction

plate spacing, cm (for striplines)

length of a side, mils (for coils)

noise figure

operating frequency

frequency where la/l = ozo/'\/i
maximum frequency of oscillation
center frequency of bandpass amplifier
self-resonant frequency, GHz (for coils)

frequency for which the common emitter current
gain is unity

common emitter current gain

collector base cutoff current, mA
emitter current, mA

imaginary half period of sn (z)

real quarter period of sn (z)

modulus of the elli.ptic functions
inductance or inductance per unit length

low frequency inductance

155



length of transmission line, cm

net impurity concentration of lightly doped side
of a junction

number of turns

power gain

output power, watts

quality factor for a reactive element
unloaded Q

charge on the electron

source resistance

base spreading resistance

emitter resistance

average length of a side, inches (for coils)
plate thickness, cm (for striplines)
conductor thickness, microinches (for coils)
dc bias voltage

velocity of propagation

total voltage across a junction

center conductor strip width, cm

spiral line width, mils (for coils)
characteristic impedance, ohms

Jacobian zeta function

low-frequency, small-signal current gain for com-
mon base configuration

dielectric constant (equal to 1 for free space)
permittivity of free space

wavelength, cm

wavelength in free space, cm

relative permeability (equal to | for free space)

permeability of free space

complex permeability including loss term
conductivity, mhos

contact potential
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